Supporting Information to Orientation order and rotation mobility of nitroxide biradicals determined by quantitative simulation of EPR spectra.

Similar documents
An introduction to Solid State NMR and its Interactions

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Tutorial Session - Exercises. Problem 1: Dipolar Interaction in Water Moleclues

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Spin Interactions. Giuseppe Pileio 24/10/2006

Hyperfine interaction

6 NMR Interactions: Zeeman and CSA

Rotations and vibrations of polyatomic molecules

Problem 1: Spin 1 2. particles (10 points)

Archived Information. Comment on Distinct Populations in Spin-Label EPR Spectra from Nitroxides [J. Phys. Chem. B 2018, 122, ]

Implications of Time-Reversal Symmetry in Quantum Mechanics

Physics 221A Fall 2005 Homework 11 Due Thursday, November 17, 2005

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

Supplementary Figure 1. Spin-spin relaxation curves for three La 1.8-x Eu 0.2 Sr x CuO 4 samples.

Summary of Fourier Optics

Chapter 5. The Differential Forms of the Fundamental Laws

Rotational Brownian Motion and Kerr Effect Relaxation in Electric Fields of Arbitrary Strength. Yuri P. KALMYKOV

Tensor Visualization. CSC 7443: Scientific Information Visualization

MOLECULAR SPECTROSCOPY

Two Posts to Fill On School Board

Chem8028(1314) - Spin Dynamics: Spin Interactions

Computational Spectroscopy III. Spectroscopic Hamiltonians

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Uniformity of the Universe

Physical Dynamics (SPA5304) Lecture Plan 2018

M E 320 Professor John M. Cimbala Lecture 10

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T.

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Group Theory and Its Applications in Physics

1 Magnetism, Curie s Law and the Bloch Equations

Diatomics in Molecules - DIM

Course Magnetic Resonance

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

Nuclear models: Collective Nuclear Models (part 2)

A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible Molecular Photoswitches

Symmetries in Quantum Physics

Getting started: CFD notation

Ket space as a vector space over the complex numbers

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

Are these states normalized? A) Yes

QUANTUM MECHANIC S. Symmetries

NMR: Formalism & Techniques

12. Stresses and Strains

QM and Angular Momentum

Classical Mechanics. Luis Anchordoqui

Lecture 7. Properties of Materials

Angular Momentum in Quantum Mechanics

Equilibrium orientation of an ellipsoidal particle inside a dielectric medium with a finite electric conductivity in the external electric field

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

OWELL WEEKLY JOURNAL

3-D Kinetics of Rigid Bodies

Modeling the Effects of Structure and Dynamics of the Nitroxide Side Chain on the ESR Spectra of Spin-Labeled Proteins

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

Chapter 1. Magnetism of the Rare-Earth Ions in Crystals

«Seuls les coeurs purs et les fées vont au paradis. L humanité odieuse dans deux nouvelles de René Barjavel»

Image enhancement. Why image enhancement? Why image enhancement? Why image enhancement? Example of artifacts caused by image encoding

Nuclear magnetic resonance in condensed matter

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Introduction to Seismology Spring 2008

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

Analysis of the simulation

DEPARTMENT OF PHYSICS

arxiv:quant-ph/ v1 20 Apr 1995

Rotational Diffusion and Order Parameters of a Liquid Crystalline Polymer Studied by ESR: Molecular Weight Dependence

Peter Hertel. University of Osnabrück, Germany. Lecture presented at APS, Nankai University, China.

1/30. Rigid Body Rotations. Dave Frank

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

The Generalized Boundary Layer Equations

Lattice Boltzmann Method for Moving Boundaries

13, Applications of molecular symmetry and group theory

SUPPLEMENTARY MATERIAL

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Diffusion Tensor Imaging (DTI): An overview of key concepts

Magnetic Resonance Imaging in a Nutshell

Lecture 8. Stress Strain in Multi-dimension

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

3.5 The random-phase approximation

Angular Momentum. Andreas Wacker Mathematical Physics Lund University

Introduction to Electron Paramagnetic Resonance Spectroscopy

3 Constitutive Relations: Macroscopic Properties of Matter

Homework assignment 3: due Thursday, 10/26/2017

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA

3: Many electrons. Orbital symmetries. l =2 1. m l

List of Comprehensive Exams Topics

Principles of Magnetic Resonance

Wigner 3-j Symbols. D j 2. m 2,m 2 (ˆn, θ)(j, m j 1,m 1; j 2,m 2). (7)

A Cu-Zn-Cu-Zn heterometallomacrocycle shows significant antiferromagnetic coupling between paramagnetic centres mediated by diamagnetic metal

Tensor Operators and the Wigner Eckart Theorem

Physical Dynamics (PHY-304)

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Final Exam May 4, 2016

The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules. DerekA. Long

Isospin. K.K. Gan L5: Isospin and Parity 1

Elements of Rock Mechanics

THEORY OF MAGNETIC RESONANCE

Transcription:

Electronic Supplementary Material (ESI for hysical Chemistry Chemical hysics. This journal is the Owner Societies 06 Supporting Information to Orientation order and rotation mobility of nitroxide biradicals determined by quantitative simulation of ER spectra. Matrix elements for rotation diffusion superoperator in the case of noncoincident orientation and rotation tensors. The goal of this section is to determine the matrix elements of stochastic iouville superoperator for the purpose of ER spectra simulation in the situation, when the principal axes of rotation diffusion are not coincident with the principal axes of molecule orientation. et us consider Smoluchowski equation for rotation diffusion in orientation potential [, ]: ( W,t W0,0 -Γ( W,t W0,0 t ÊU( W -R( W,t W0,0 -R ( W,t W 0,0 Ë kbt - R È ij i j + i( ju ( W,t W0,0 i, j xyz,, Here ( W,t W0,0 is the probability density to find the molecule at moment t in the orientation given by Euler angles W, on the condition that at zero time the molecule had the orientaition W 0, Γ is the stationary Markovian operator defining correlation functions for rotation, diffusion tensor is assumed to be symmetric, Rij Rji, is the operator of infinitesimal rotation, identical to dimensionless quantum-mechanical angular U( W momentum operator, U is dimensionless mean-field potential. kbt Equation ( defines stationary orientation distribution 0 ( W, such that Γ 0 ( W 0. Explicit expression for 0 ( W is given by Maxwell Boltzmann distribution: 0 ( W e- U For calculation of ER spectra, one should work with symmetrized superoperator -/ / Γ 0( W Γ 0( W ( (

which is self-adjoint. By applying symmetrization transformation ( to expression (, one obtains: ( Γ e Γe e R + e U / - U / U/ È / ij i j i j - U U (3 i, j xyz,, Since the angular momentum operator is the first order differential operator, the following identities can be used: ( ( + ( i f g f i g f g i -U / Ê / ( -U - ( iu i e e Ë By using expressions (, equation (3 transforms into È Γ Rij Í - iu ju + i ju + i ju - iu j + i j i, j xyz,, ( ( ( ( ( ( ( ( È Rij Í - i j + i j + i j i, j xyz,, (5 The second equality in (5 follows from the symmetry of diffusion tensor, Dij Dji. By ( U ( U ( U ( ( expanding the sum in (5, one obtains: È Γ RxxÍ - xu + x U + x È + Ryy Í - ( yu + ( y U + ( y È + Rzz Í - ( zu + ( z U + ( z È + Rxy Í - ( xu ( yu + (( x y + yx U + ( x y + yx È + Rxz Í - ( xu ( zu + (( x z + z x U + ( x z + z x È + Ryz - ( yu ( zu + (( y z z y ( y z z y Í + U + + ( ( ( (6 The expression (6 can be rewritten with the use of operators, z, ± x ± iy, for which the set of Wigner functions ( W D M with constant and M is closed. It is convenient to adopt the following notation for combinations of diffusion tensor components []:

( Rxz + iryz Rxx + Ryy Rxx - Ryy + irxy R r, e, h zz, k Rxx + Ryy Rxx + Ryy Rxx + Ryy (7 Then the equation (6 transforms into: e r er r hr Γ- ( + U - ( - U - ( + U ( -U - ( zu 8 8 e r er r ( h - r + ( + U + ( - U + ( U + ( z U e r er + + + - + r + ( h- rz (8 - ( + U ( zu - ( -U ( zu + È( + z + z + È( - z + z - U+ U + ( + z + z + + ( - z + z - The items in (8 can be divided into two groups. The first group contains the terms, which are independent of the mean-field potential: e r er Γiso + + - + r + ( h - rz (9 + ( + z + z + + ( - z + z - The remaining terms, i. e. those depending on mean-field potential, comprise the second group: Γ U e r er r hr - ( + U - ( - U - ( + U ( -U - ( zu 8 8 e r er r ( h - r + ( + U + ( - U + ( U + ( z U (0 - ( + U ( zu - ( -U ( zu + È( + z + z + È( - z + z - U+ U The operator Γ will be calculated in the basis of normalized Wigner functions:

M M + D M W 8p ( + D M W 8p ( Then the corresponding matrix elements are given by ( + ( + Γ Ú M M ( D ( ΓD ( ( M M dw W W 8p The following properties of the angular momentum operators are used for calculation of matrix elements: ( W È ( + - ( ± È ( + -( ± ( ± ( W ± DM D M± (3 ( W ( + - ( ± D ( W È ± z DM M± ( W ( ± ( + - ( ± D ( W È z ± DM M± Also, the following notation is used for eigenvalues of ladder operators: ( ( M± (, + - ± (5 By applying Eqs. (, (3 and ( to expression (9, one obtains the matrix elements of the superoperator Γ iso : ( M Γ iso M { ( ( d d MM d È r + + h - r È + d ( + Í + M+ (, Í È + d ( -Í - M-(, È e r + d + Í M+ (, M+ (, + Í Èer + d -Í M-(, M-(, - (6 et us now turn to calculating matrix elements for potential-dependent terms Γ U. For the mean-field potential, the decomposition in Wigner functions is used

U - aq D0 q( W (7 0 q- Only terms with even are non-zero in (7, due to the fact that the mean-field potential is centrosymmetric. The superoperator Γ U can also be decomposed into the series in Wigner functions: Γ X D ( W (8 U q 0q 0 q- For the components X q the same selection rules hold as for the potential decomposition terms a q. The matrix elements, which correspond to equation (8, are given by ( + ( + X M Γ U M 0-8p ( d È ( ( Ú W ÍD W ΓD W D0 W M M ( + ( + X - 0 M+ Ê Ê (- ËM 0 -M Ë - - The last equality in (9 was obtained with the use of Clebsch-Gordan decomposition: D ( D ( W W MN MN + M+ N Ê Ê - + M MN W -M M N -N N - MN, - Ë Ë ( ( D ( (9 (0 For calculating the terms Wigner functions, as follows: X, individual terms in (0 should be expanded in series in

± U - aq M± q 0q± W 0q- U ( D ( - aq + 0q W q (, D ( ± U q q ± ± ( 0q± 0q± q q q ( - ( + D0 q ( W a a M (, (, q q ± q M± q q, q q Ê Ê 0 0 0 q± -q q ± Ë Ë ( a a M (, q M (, q D ( W D ( W + - q q + - 0q+ 0q- q q q - + 0 q W q q q, q q + - Ê Ê Ë 0 0 0 Ëq+ -q q - ( U ( U a a M (, q M (, q D ( W D ( W zu - aq qd0q W 0q- ( ( D ( a a M (, q M (, q ( z U - aq q D 0 q W 0q- ( zu (3 q q 0q 0q q q q ( - ( + D0 q ( W a a q q q q q, q q Ê Ê 0 0 0 q -q q Ë Ë ( a a q q D ( W D ( W (

( U ( U a a M (, q q D ( W D ( W + z q q + 0q+ 0q q q q ( - ( + D0 q ( W a a M (, q q + q q q, q q Ê Ê 0 0 0 q+ -q q Ë Ë ( U ( U a a M (, q q D ( W D ( W - z q q - 0q- 0q q q q (- ( + D0 q ( W a a M (, q q - q q q, q q Ê Ê 0 0 0 q- -q q Ë Ë (, (, D ( ± U - aq M± q M± q+ 0q± W q (, (, D ( - aqm M± qm M± qm 0q W q ( + U - a M (, q( q± D ( W ± z z ± q ± 0q± q (, ( D ( - aqm M± qm qm 0q W q ( (5 (6 Then, by combining expressions (0, ( (6, the overall value of as: X can be written

X r ( ( h -aq È + + - q e r - aq- M+ q- M+ q- er (, (, (, (, - aq+ M- q+ M- q+ - aq- M+ ( q, -( q- (, ( - aq+ M- q+ q+ q Ê -(- ( + a a q q 0 0 0 q q Ë È e r Ê Í M+ (, q M+ (, q Í 8 Ëq+ -q q + er Ê + M-(, q M-(, q 8 Ëq- -q q - r Ê + M+ (, q M-(, q Ëq+ -q q - hr Ê + q q Ëq -q q Ê + M+ (, q q Ëq+ -q q Ê + M-(, q q Ëq- -q q (7 Now one can return to designations D ij for the rotation diffusion tensor components. For the matrix elements of superoperator Γ iso, one obtains:

M Γ iso M ÔÏ ÈRxx + Ryy d d ( MM Ìd È Í + - + Rzz Ô Ó ÈRxz -iryz + d ( + Í + M+ (, ÈRxz + iryz (8 + d ( -Í - M-(, ÈRxx -Ryy -irxy + d + Í M + (, M + (, + + d ÈR - R + ir Ô M (, M (, - Ô xx yy xy - Í - - Following the ideas of Refs. [, 3, ], for rendering of stochastic iouville superoperator in the complex symmetric form, the following modified basis should be used: + ( ( j Mj M + j - M - ( + d0 where (9 j sgn(, if 0 j -, if 0 ( (30 It can be shown that in the modified basis, the matrix elements of superoperator Γ iso are given by the following equations:

if, j j M j Γ iso M j Re M Γiso M -d (, j - Re M - Γiso M (3 if, j j ( iso d, - Im - iso M j Γ M j M Γ M (3 if, j j ( d ( d / Γ iso È + 0 + 0 Re Γ iso M j M j M M (33 if, j j ( d ( d / M j Γiso M j - j È + 0 + 0 Im M Γiso M (3 where M Γ iso M ÔÏ ÈRxx + Ryy d d ( MM Ìd È Í + - + Rzz Ô Ó ÈRxz -iryz + d ( + Í + M+ (, ÈRxz + iryz + d ( -Í - M-(, ÈRxx -Ryy -irxy + d + Í M + (, M + (, + + d ÈR - R + ir Ô M (, M (, - Ô xx yy xy - Í - - One can see that in the case of diagonal diffusion tensor, equations (3 (3 are identical to the equation (B33 in Ref. [3]:

M j Γiso M j Ï Ô ÈRxx + Ryy d d ( MM d j j Ìd È Í + - + Rzz Ô Ó Rxx -Ryy / + Èd - N ( +, d + N ( -, È( d 0( d0 + + + where N (, M (, M (, ±. ± ± ± (35 By returning to designations D ij for the rotation diffusion tensor components, the following expression for the spherical components of superoperator Γ U are obtained: X q aq ÊRxx + Ryy - È ( + - q + Rzzq Ë Rxx -Ryy -irxy aq- - M+ q- M+ q- Rxx - Ryy + irxy aq+ - M- q+ M- q+ Rxz -iryz aq- - M+ (, q-( q- Rxz + iryz aq+ - M-(, q+ ( q+ q + Ê -(- a a q q Ë 0 0 0 q q (, (, (, (, ÈRxx -Ryy -irxy Ê Í M+ (, q M+ (, q q q q Ë + - + Rxx - Ryy + irxy Ê + M-(, q M-(, q q q q Ë - - - Rxx + Ryy Ê + M+ (, q M-(, q q q q Ë + - - Ê + Rz q q q q q Ë - Ê + ( Rxz -iryz M+ (, q q q q q Ë + - Ê + ( Rxz + iryz M-(, q q q q q Ë - - (36

One can see that in the case of diagonal rotation diffusion tensor, the equation (36 reduces to Eq, (B6 in Ref. [3]: X ( a - N+ (, q a + N-(, q Ê Rxx -Ryy q - q - + q + + Ë Ê Rxx + Ryy + aq È ( + - q + Rzzq - Ë + Ê - a a q q 0 0 0 q q Ë ÈRxx -Ryy Ê Ê Í M+ (, q M+ (, q + q+ -q q + Í Ë Ë Ê + M-(, q M-(, q q- q q + Ë - - Rxx + Ryy Ê + M+ (, q M-(, q q q q + Ë + - - Ê + Rzz q q q q q Ë - For calculation of matrix elements of superoperator Γ U in the modified basis (9, the expression (9 should be modified. For this, the following symmetry relation for should be noted: - q - ( q ( X X (37 q which follows from the symmetry property of the mean-field potential: ( q ( a a- q - q (38 This entails the symmetry property for the matrix element: ( + + + M - Γ U M - - M Γ U M Thus, any matrix element in symmetrized basis (9, can be calculated from the matrix elements in the original basis (: X

/ - M j Γ M j Ê j j È ( + d 0( + d0 Ë ( M Γ M + j j M Γ M + j - M M - + j j M M - + ( ( Γ Γ if j j ( d ( d / - M j Γ M j È + 0 + 0 if j j + ( Re M Γ M j ( Re M Γ M + - - / - Γ È( + d ( + d ( Im + M Γ M j ( ( Im M Γ M M j M j j 0 0 + - - (39 (0 In the explicit form, if j j ( d ( d ΓU M j È + 0 + 0 M j -/ M+ Ê ( + ( + ( - M 0 0 M Ë - È Ê ÍRe X - Ë - - + Ê + j ( - Re X + - + - Ë ( if j j

( d ( d M j M j j ΓU È + 0 + 0 M+ Ê ( + ( + ( - M 0 0 M Ë - È Ê ÍIm X - Ë - - + Ê + j ( - Im X + - + - Ë -/ ( The equation ( is identical to Eq. (B7 from Ref. [3]. That means, that for diagonal rotation diffusion tensor, and orthorhombic potential, expressions ( ( reduce to those known in literature.

References:. C.F. olnaszek,.h. Freed. Electron Spin Resonance Studies of Anisotropic Ordering, Spin Relaxation, and Slow Tumbling in iquid Crystalline Solvents //. hys. Chem. 975. V. 79. No.. 83-306.. R. Tarroni, C. Zannoni. On the rotational diffusion of asymetric mlecules in liquid crystals //. Chem. hys. 99. V. 95. No 6.. 550-56. 3. S. ee, D.E. Budil,.H. Freed. Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids //. Chem. hys. 99. V. 0. No 7.. 559.. E. Meirovitch, D. Inger, E. Inger, G. Moro,.H. Freed. Electron-spin relaxation and ordering in smectic and supercooled nematic liquid crystals //. Chem. hys. 98. V. 77. No 8.. 395.