The KN KΞ reac*on in a chiral NLO model

Similar documents
Meson-baryon interactions and baryon resonances

8 September Dear Paul...

Chiral dynamics and baryon resonances

DYNAMICAL BARYON RESONANCES FROM CHIRAL UNITARITY

Universidad Complutense de Madrid September 8-9, In collaboration with A. Feijoo Aliau, A. Ramos & E. Oset

What we know about the Λ(1405)

Wave functions and compositeness for hadron resonances from the scattering amplitude

S-wave exotic resonances induced by chiral interaction

Hadronic few-body systems in chiral dynamics ~ few-body systems in hadron physics ~ D. Jido (Yukawa Institute, Kyoto)

Exotic baryon resonances in the chiral dynamics

On the two-pole interpretation of HADES data

KbarN and KbarNN INTERACTIONS - Theory Status -

Recent Progress in Baryon Spectroscopy at BESIII

arxiv: v3 [hep-ph] 13 Dec 2018

TitleHadronic Few-Body Systems in Chiral. Citation Few-Body Systems (2013), 54(7-10):

Coupled-channel Bethe-Salpeter

Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report

Physikalisches Institut Universität Bonn BOSEN Vera Kleber. Λ(1405) Photoproduction at CB-ELSA. Vera Kleber Bosen,

Reevalua'on of Neutron Electric Dipole Moment with QCD Sum Rules

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Compositeness of the Δ(1232) resonance in πn scatterings

Cascade Production in K- and Photon-induced Reactions. Collaboration: Benjamin Jackson (UGA) Helmut Haberzettl (GWU) Yongseok Oh (KNU) K. N.

Experimental Study of the Kaonic Bond State

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev

arxiv: v2 [hep-ph] 26 Nov 2009

arxiv: v2 [nucl-th] 6 Jul 2011

Charmed meson masses in medium based on effec1ve chiral models

arxiv: v3 [nucl-th] 8 Jun 2018

Structure of the antikaon-nucleon scattering amplitude Maxim Mai

Charmed mesons in nuclear matter

Construction of K N potential and structure of Λ(1405) based on chiral unitary approach

Strangeness and Charm in Nuclear Matter

Charmed hadrons in Dense ma.er based on chiral models

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics

Pion-nucleon scattering around the delta-isobar resonance

Photoproduction of the f 1 (1285) Meson

Precision Electroweak Measurements at the Tevatron

Unitary coupled channel analysis of the Λ(1520) resonance arxiv:hep-ph/ v1 27 Mar 2006

Nature of the sigma meson as revealed by its softening process

Author(s) Jido, Daisuke; Kanada-En yo, Yoshik. Citation Hyperfine Interactions (2009), 193(

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

The Hadronic Decay Ratios of η 5π at NLO in χpt

QCD Lagrangian. ψ qi. δ ij. ψ i L QCD. m q. = ψ qi. G α µν = µ G α ν ν G α µ gf αβγ G β µ G γ. G α t α f αβγ. g = 4πα s. (!

arxiv: v2 [hep-ph] 16 Feb 2013

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances

Dynamical Model Analysis of Hadron Resonances (IV) T.- S. Harry Lee Argonne Na1onal Laboratory

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

Understanding the basic features of Cascade Photoproduction

PoS(Confinement8)107. Strangeness and charm at FAIR

Heavy flavor produc.on and spectroscopy at ATLAS. For the ATLAS collabora.on

Radia%ve B decays at LHCb

LHC results on open charm, double charm and X(3872) produc<on

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Gell- Mann- Nishijima formula FK

Structure of near-threshold s-wave resonances

Overview of Light-Hadron Spectroscopy and Exotics

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Dynamically generated resonances from the vector octet-baryon decuplet interaction

Structure and compositeness of hadrons

Elementarity of composite systems

Charmonium hadronic transi/ons at BESIII

Heavy Hidden-Flavour Molecules in a Finite Volume

Exo$c hadrons with heavy quarks

Overview of recent theore.cal work on two-photon exchange

Properties of the Λ(1405) Measured at CLAS

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models

Department of Physics, Liaoning Normal University, Dalian , China

From charm mesons to doubly-charmed baryons

Measuring the charged pion polarizability in the γγ π + π reac5on

Recent Results on J/ψ, ψ and ψ Decays from BESII

Modern Theory of Nuclear Forces

arxiv: v2 [nucl-th] 15 Mar 2017

Dynamical coupled channel calculation of pion and omega meson production

Nuclear Physics from Lattice Effective Field Theory

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Heavier quarks FK

Current theoretical topics on K - pp quasi-bound state

Hyperon Photoproduction:

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

A comprehensive interpretation of the D sj states

arxiv: v2 [nucl-th] 9 Jan 2017

Charm baryon spectroscopy from heavy quark symmetry

Heavy flavors on the la/ce

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

F. S.Navarra Instituto de Física, Universidade de São Paulo, C.P , São Paulo, SP, Brazil.

η ηππ in unitarized Resonance Chiral Theory

Hc 5: Outline. Book by Tipler, chapter 12.2

Structure and compositeness of hadrons

Strong coupling constant. 12π ( 22 2n f ) ln Q 2 2. The spa1al separa1on between quarks goes as ! = " Q 2

Compositeness of Dynamically Generated Resonances

Nuclei with Antikaons

arxiv:nucl-th/ v1 30 Jul 2004

Meson-baryon interaction in the meson exchange picture

Photon induced Λ(1520) production and the role of the K exchange

Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity

Vincent Poireau CNRS-IN2P3, LAPP Annecy, Université de Savoie, France On behalf of the BaBar collaboration

Transcription:

The KN KΞ reac*on in a chiral NLO model Àngels Ramos A. Feijoo, V.K. Magas, A. Ramos, Phys. Rev. C92 (2015) 1, 015206

Outline Introduc*on State- of- the art of chiral unitary models for the meson- baryon interac*on in the S=- 1 sector The KN KΞ reac*on ( important for NLO terms) Reac*ons providing I=0 or I=1 filters for the KN KΞ reac*on Conclusions

Chiral unitary approach Describing the dynamics of hadrons at low energies from the QCD Lagrangian (quarks and gluons d.o.f.) is a highly non- perturba*ve problem One may address this problem through the modern perspec*ve of Chiral Perturba*on Theory (χpt): effec*ve theory with hadron degrees of freedom which respects the symmetries of QCD, in par*cular the (spontaneously broken) chiral symmetry. In ordinary χpt: à convergence restricted to low energy physics à not adequate close to bound- states (pole in the T- matrix) Unitarized non- perturba*ve schemes (UχPT ) allow to extend the predic*ve power of the chiral theories. With these non- perturba*ve methods several known resonances have been generated as poles in the scatering amplitude (quasi- bound states) and many hadron reac*on cross sec*ons have been nicely reproduced.

The case of the Λ(1405) (a nice example of the success of non- perturba*ve chiral approaches) Kbar- N scatering in the isospin I=0 channel is dominated by the presence of the Λ(1405), located only 27 MeV below the Kbar- N threshold Back in 1950, Dalitz and Tuan already proposed that the Kbar- N interac*on is atrac*ve enough to generate a quasi- bound state, the Λ(1405), below the Kbar- N threshold and embedded in the πσ con*nuum. R. H. Dalitz and S. F. Tuan, Phys. Rev. LeM. 2 (1959) 425. R. H. Dalitz and S. F. Tuan, Annals of Phys. 10 (1960) 307

In 1995 Kaiser, Siegel and Weise reformulated the problem in terms of the effec*ve chiral unitary theory in coupled channels. N. Kaiser, P. B. Siegel, and W. Weise, Nucl. Phys. A594 (1995) 325 For the next 10 years (up to 2006) much work was devoted to this subject with various degrees of sophis*ca*on: more channels, NLO Lagrangian, s- channel and u- channel Born terms, all of them obtaining in general similar features. E. Oset and A. Ramos, Nucl. Phys. A635 (1998) 99 J.A. Oller and U.G. Meissner, Phys. LeM. B500 (2001) 263 M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A700 (2002) 193 C. Garcia- Recio et al., Phys. Rev. D (2003) 07009 B. Borasoy, R. Nissler, and W. Weise, Phys. Rev. LeM. 94, 213401 (2005); Eur. Phys. J. A25,79 (2005) J.A. Oller, J. Prades, and M. Verbeni, Phys. Rev. LeM. 95, 172502 (2005) B. Borasoy, U. G. Meissner and R. Nissler, Phys. Rev. C74, 055201 (2006)

Essence of the non- perturba^ve chiral approach 1. Meson- baryon effec^ve chiral Lagrangian: Lowest order (LO), O(q) LO meson- baryon poten*al in s- wave (contact term): One parameter: f

Next to leading order (NLO), O(q 2 ) deriva*ve terms: d 1,d 2,d 3,d 4 explicit chiral symmetry breaking terms: b D, b F, b 0 NLO contribu*on to the meson- baryon poten*al: D ij, L ij : matrices which depend on the 7 NLO parameters: b D, b F, b 0,d 1,d 2,d 3,d 4

2. Unitariza^on: N/D, Bethe- Salpeter = + T ij = V ij + V il G l T lj Coupled channels in S=- 1 meson- baryon sector: 3. Regulariza^on of loop func^on: Dimensional regulariza*on : subtrac*on constants (to be fited): a l natural size (µ~700 MeV) J.A. Oller and U.G. Meissner, Phys. LeM. B500 (2001) 263

Parameters - 1 decay constant: f - 7 parameters of the NLO Lagrangian: b D, b F, b 0,d 1,d 2,d 3,d 4-6 subtrac*on constants (isospin symmetry):

( ) Threshold observables γ = Γ ( K p π + Σ ) Γ ( K p π Σ +) ( + (( Γ ( K p π 0 Λ ) R n = Γ ( ) K p neutral states ) = ( = + +) = ) R c = Γ ( K p π + Σ, π Σ +) Γ ( K p all inelastic channels )

Cross sec*ons

The two- pole structure of the Λ(1405) T- matrix poles and couplings to physical states with I=0 T -matrix will be as T ij = g i g j s MR + iγ/2, z R 1390-66i 1426-16i (I=0) g i g i πσ 2.9 1.5 ΚΝ 2.1 2.7 ηλ 0.77 1.4 ΚΞ 0.61 0.35 Experimental evidence Magas, Oset, Ramos, PRL 95 (2005) 052301 π - pà K 0 πσ D.W.Thomas et al. Nucl. Phys. B56, 15 (1973) K - p à π 0 π 0 Σ 0 S. Prakhov et al., Phys.Rev. C70,034605 (2004) à The Λ(1405) resonance shows different proper*es (posi*on, width) in different reac*ons à Success of meson- baryon coupled- channel models!

Recently, the more precise SIDDHARTA measurement of the energy shim ΔE and width Γ of the 1s state in kaonic hydrogen, clarifying the inconsistency between earlier KEK and DEAR experiments, has injected a renovated interest in the field M. Bazzi et al. Phys. LeM. B704 (2011) 113 the parameters of the NLO meson- baryon Lagrangian can be beter constrained beter knowledge of the KbarN interac*on Y. Ikeda, T. Hyodo, W. Weise, Nucl.Phys. A881 (2012) 98 Z- H. Guo, J.A. Oller, Phys.Rev. C87 (2013) 3, 035202 M. Mai, U- G. Meissner, Nucl.Phys. A900 (2013) 51; Eur. Phys. J. A51 (2015) 3, 30 V.K. Magas, A. Feijoo, A. Ramos, Phys. Rev. C92 (2015) 1, 015206

K - p K Ξ channels V.K. Magas, A. Feijoo, A. Ramos, Phys. Rev. C92 (2015) 1, 015206 Differently than the other chiral unitary fits, we incorporate the data on the Κ - p Κ + Ξ -, Κ 0 Ξ 0 reac*ons These transi*ons are par*cularly interes*ng because the LO (Weinberg- Tomozawa) terms are zero Therefore, these channels are especially sensi*ve to NLO parameters!!

NLO coefficients

Results (K - p --> K - p) [mb] 150 120 90 60 30 WT (no ) NLO (no ) WT NLO (K - p --> K 0 n) [mb] 60 45 30 15 WT (no ) NLO (no ) WT NLO (K - p --> + ) [mb] (K - p --> 0 0 ) [mb] 0 50 100 150 200 250 300 P lab [MeV/c] 100 80 60 40 20 WT (no ) NLO (no ) WT NLO 0 50 100 150 200 250 300 P lab [MeV/c] 150 120 90 60 30 WT (no ) NLO (no ) WT NLO 0 50 100 150 200 250 300 P lab [MeV/c] (K - p --> + ) [mb] (K - p --> 0 ) [mb] 250 200 150 100 0 50 100 150 200 250 300 P lab [MeV/c] 50 WT (no ) NLO (no ) WT NLO 0 50 100 150 200 250 300 P lab [MeV/c] 50 40 30 20 10 WT (no ) NLO (no ) WT NLO 0 50 100 150 200 250 300 P lab [MeV/c] 2 models do not use KΞ data: WT(no Ξ) NLO (no Ξ) 2 models include KΞ data: WT NLO

Results 0.15 (K - p --> K 0 0 ) [mb] 0.12 0.09 0.06 0.03 WT (no ) NLO (no ) WT NLO 0 1.8 2 2.2 2.4 2.6 E CM [GeV] 2 models do not use KΞ data: WT(no Ξ) NLO (no Ξ) 2 models include KΞ data: WT NLO (K - p --> K + ) [mb] 0.2 0.1 WT (no ) NLO (no ) WT NLO ü The NLO terms are determinant for a reasonable descrip*on of data! ü There are s*ll some resonant structures not accounted for! 0 1.8 2 2.2 2.4 2.6 E CM [GeV] Explore the addi*onal effect of resonances!

From the PDG we see many 3* and 4* resonances in the region of interest! Resonances in KΞ channels K R K N Ξ In the resonant model of Sharov, Korotkikh, Lanskoy, EPJA 47 (2011) 109 for the KN KΞ reac*on several combina*ons were tested Σ(2030) and Σ(2250) were the more relevant! The Σ(2030) also plays a relevant role in the γ p K + K + Σ - reac*on K. Nakayama, Y. Oh, H. HabertzeMl, Phys. Rev. C74, 035205 (2006) K. Shing Man, Y. Oh, K. Nakayama,, Phys. Rev. C83, 055201 (2011)

We suplement the LO+NLO Lagrangian with two resonances: J P =7/2 + M R ~ 2030 MeV the fit determines their masses, widths and couplings J P =5/2 - M R ~ 2250 MeV 0.15 (K - p --> K 0 0 ) [mb] 0.12 0.09 0.06 0.03 NLO* NLO+RES 0 1.8 2 2.2 2.4 2.6 E CM [GeV] 0.25 (K - p --> K + ) [mb] 0.2 0.15 0.1 0.05 NLO* NLO+RES 0 1.8 2 2.2 2.4 2.6 E CM [GeV]

Differen*al cross sec*ons d /d (µb/sr) 30 20 10 NLO* NLO+RES s 1/2 =1.97 GeV 40 30 s 1/2 =2.07 GeV 20 10 40 30 s 1/2 =2.14 GeV 20 10 10 8 6 s 1/2 =2.28 GeV 4 2 0-1 -0.5 0 0.5 1 cos s 1/2 =2.02 GeV s 1/2 =2.11 GeV s 1/2 =2.15 GeV s 1/2 =2.47 GeV -0.5 0 0.5 1 cos d /d (µb/sr) 40 30 s 1/2 =1.95 GeV 20 10 80 60 s 1/2 =2.07 GeV 40 20 60 45 s 1/2 =2.14 GeV 30 15 50 40 s 1/2 =2.28 GeV 30 20 10 40 30 s 1/2 =2.42 GeV 20 10 08 6 s 1/2 =2.79 GeV 4 2 0-1 -0.5 0 0.5 1 cos 40 s 1/2 =1.97 GeV 30 20 10 80 s 1/2 =2.11 GeV 60 40 20 40 s 1/2 =2.24 GeV 30 20 10 40 s 1/2 =2.33 GeV 30 20 10 40 s 1/2 =2.48 GeV 30 20 10-0.5 0 0.5 0 1 cos

Parameters

NLO* Analysis of isospin contribu*ons NLO* NLO+RES ü Our unitarized calcula*ons produce stronger I=1 amplitudes than I=0 ones ü This tendency is enhanced when I=1 resonances are included (NLO+RES) Different theore*cal models predict different isospin decomposi*ons, see e.g.. C. Jackson, Y. Oh, H. HaberzeMl, and K. Nakayama, Phys. Rev. C 91, 065208 (2015)

An I=0 filter for KΞ amplitudes: the decay Λ b J/Ψ K Ξ A. Feijoo, V.K. Magas, A. Ramos, E. Oset, Phys.Rev. D92 (2015) 076015 + FSI: P c + states: R. Aaij et al. LHCb coll. PRL 115, 072001 (2015)

W. H. Liang and E. Oset, Phys. LeM. B 737, 70 (2014) L. Roca, M. Mai, E. Oset and U. G. Meissner, Eur. Phys. J. C75, 218 (2015) Meson- Baryon in I=0! +

K+Ξ - invariant mass distribu*on from the decay Λ b J/Ψ K + Ξ - (I=0 filter)! Different models fited to K- p K + Ξ -, K 0 Ξ 0 scatering data predict different I=0 distribu*ons The NLO terms of the Lagrangian are dominant

I=1 filter from the Secondary K 0 L beam at Jlab (S=- 1, I=1) _ It proceeds through the K 0 component of the K 0 L (K 0 L p --> K+ 0 ) [mb] 0.25 0.2 0.15 0.1 0.05 NLO+RES NLO* WT 0 1.8 2 2.2 2.4 2.6 E CM [GeV]

I=1 reac*on: K - n K 0 Ξ - J. P. Berge et al. Phys. Rev. 147, 945 (1966). S.A.B.R.E. Collabora^on, J. C. Scheuer et al. Nucl. Phys. B 33, 61 (1971). Data from the secondary K 0 L beam at Jlab will be very valuable to constrain the models of the S=- 1 meson- baryon interac*on!

Conclusions Chiral Perturba*on Theory with unitariza*on in coupled channels is a very powerful technique to describe low energy hadron dynamics. More precise data has become available in K - p scatering NLO calcula*ons become more meaningful The K - p K + Ξ -, K 0 Ξ 0 reac*ons are very sensi*ve to the NLO parameters Explicit inclusion of resonances improves the precision of the fited parameters _ An isospin decomposi*on of the KN KΞ reac*ons would help constrain beter the S=- 1 meson- baryon interac*on Data from the secondary K 0 L beam at Jlab will be very valuable!