Preconditioned space-time boundary element methods for the heat equation

Similar documents
Space time finite and boundary element methods

Technische Universität Graz

Technische Universität Graz

Domain decomposition methods via boundary integral equations

An Adaptive Space-Time Boundary Element Method for the Wave Equation

A Space-Time Boundary Element Method for the Wave Equation

Space-time Finite Element Methods for Parabolic Evolution Problems

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Solution of Non-Homogeneous Dirichlet Problems with FEM

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

The Mortar Boundary Element Method

The Helmholtz Equation

Past, present and space-time

Technische Universität Graz

Regularity Theory a Fourth Order PDE with Delta Right Hand Side

Space-time sparse discretization of linear parabolic equations

Projection Methods for Rotating Flow

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Trefftz-DG solution to the Helmholtz equation involving integral equations

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

A non-standard Finite Element Method based on boundary integral operators

Hamburger Beiträge zur Angewandten Mathematik

Space time finite element methods in biomedical applications

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains

Technische Universität Graz

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

Technische Universität Graz

A posteriori error estimation for elliptic problems

Multiscale methods for time-harmonic acoustic and elastic wave propagation

for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc.

Simple Examples on Rectangular Domains

Approximation of fluid-structure interaction problems with Lagrange multiplier

A posteriori error estimates for Maxwell Equations

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives

Boundary Integral Equations on the Sphere with Radial Basis Functions: Error Analysis

A Finite Element Method for the Surface Stokes Problem

Finite Element Method for Ordinary Differential Equations

Convergence of a finite element approximation to a state constrained elliptic control problem

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

Time domain boundary elements for dynamic contact problems

Projected Surface Finite Elements for Elliptic Equations

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Solutions of Selected Problems

BETI for acoustic and electromagnetic scattering

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED

The All-floating BETI Method: Numerical Results

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation

Splitting methods with boundary corrections

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Variational Formulations

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

Fast Multipole BEM for Structural Acoustics Simulation

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

Subdiffusion in a nonconvex polygon

Applied/Numerical Analysis Qualifying Exam

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner)

A space-time Trefftz method for the second order wave equation

Boundary element methods

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

A very short introduction to the Finite Element Method

c 2008 Society for Industrial and Applied Mathematics

Multigrid Methods for Maxwell s Equations

Sparse Tensor Galerkin Discretizations for First Order Transport Problems

i=1 α i. Given an m-times continuously

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS

Numerical Approximation Methods for Elliptic Boundary Value Problems

Scientific Computing I

NONLOCAL DIFFUSION EQUATIONS

1 Discretizing BVP with Finite Element Methods.

AM:BM. Graz University of Technology Institute of Applied Mechanics

Scalable Total BETI for 2D and 3D Contact Problems

SOME NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES

Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius

The Plane Stress Problem

A Multigrid Method for Two Dimensional Maxwell Interface Problems

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Second Order Elliptic PDE

PDEs, Homework #3 Solutions. 1. Use Hölder s inequality to show that the solution of the heat equation

Theory of PDE Homework 2

On a Discontinuous Galerkin Method for Surface PDEs

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

A space-time Trefftz method for the second order wave equation

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems

Introduction to finite element exterior calculus

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

A MHD problem on unbounded domains - Coupling of FEM and BEM

Transcription:

W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods for PDEs. RICAM.

Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 2

Model problem Dirichlet boundary value problem (Ω R n bounded Lipschitz-domain, Γ := Ω) α t u(x, t) x u(x, t) = 0 for (x, t) Q := Ω (0, T ), u(x, t) = g(x, t) for (x, t) Σ := Γ (0, T ), u(x, 0) = u 0 (x) for x Ω. Initial condition u 0 and boundary datum g given. Heat capacity α > 0. 3

Representation formula Representation formula for (x, t) Ω (0, T ) u(x, t) = Ω 1 α U (x y, t)u(y, 0)dy + 1 α T 0 Γ T n y U (x y, t s)u(y, s)ds yds. 0 Γ U (x y, t s) n y u(y, s)ds yds Fundamental solution ( ) n/2 ( ) α α x y 2 U exp, t > s, (x y, t s) := 4π(t s) 4(t s) 0, t s. 4

Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 5

Anisotropic Sobolev spaces For r, s 0 H r,s (R n R) := L 2 (R; H r (R n )) H s (R; L 2 (R n )) where u H s (R, L 2 (R n )) ( 1 + τ 2) s/2 û L 2 (R, L 2 (R n )). For Q = Ω (0, T ) H r,s (Q) := { u Q : u H r,s (R n R) }. 6

Anisotropic Sobolev spaces on Σ For r, s 0 H r,s (Σ) := L 2 (0, T ; H r (Γ)) H s (0, T ; L 2 (Γ)). Equivalent norm for 0 < r, s < 1 T u 2 H r,s (Σ) = u 2 L 2 (Σ) + Subspace and 0 Γ Γ u(x, t) u(y, t) 2 x y n 1+2r ds y ds x dt T T u(, t) u(, τ) 2 L + 2 (Γ) 0 0 t τ 1+2s dτdt. H r,s,0 (Σ) := L2 (0, T ; H r (Γ)) H s 0 (0, T ; L2 (Γ)) H r, s (Σ) := [ H r,s,0 (Σ) ]. 7

Dirichlet trace operator Theorem (Lions, Magenes 1972) Let r > 1 2 and s 0. Then there exists a linear and bounded operator γ0 int : H r,s (Q) H µ,ν (Σ) with γ int 0 u H µ,ν (Σ) c T u H r,s (Q) for all u H r,s (Q) where µ = r 1 2, ν = s s 2r and γ int 0 is an extension of γ int 0 u = u Σ for u C(Q). For r = 1 and s = 1 2 we have γint 0 : H 1, 1 2 (Q) H 1 2, 1 4 (Σ). 8

Neumann trace operator Theorem (Costabel 1990) The mapping γ int 1 : H 1, 1 2 (Q, α t x ) H 1 2, 1 4 (Σ) is linear and continuous. If u C 1 (Q) then γ 1 u = n u Σ. Subspace H 1, 1 2 (Q, α t x ) := { } u H 1, 1 2 (Q) : (α t x )u L 2 (Q). 9

An existence theorem Let u 0 L 2 (Ω), g H 1 2, 1 4 (Σ). The initial boundary value problem α t u x u = 0 in Q, u = g on Σ, u = u 0 on Ω {0} has a unique solution u H 1, 1 2 (Q, α t x ). Dirichlet trace γ int 0 u H 1 2, 1 4 (Σ) and Neumann trace γ int 1 u H 1 2, 1 4 (Σ) well defined. 10

Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 11

Initial potential Let u 0 L 2 (Ω). The function ( M 0 u 0 )(x, t) := U (x y, t)u 0 (y)dy is a solution of the homogeneous heat equation for (x, t) Q. Ω The operator M 0 : L 2 (Ω) H 1, 1 2 (Q, α t x ) is linear and bounded. boundedness of M 0 := γ0 int M 0 : L 2 (Ω) H 1 2, 1 4 (Σ) M 1 := γ1 int M 0 : L 2 (Ω) H 1 2, 1 4 (Σ). 12

Single layer potential Single layer potential with density w (Ṽ w)(x, t) := 1 t U (x y, t s)w(y, s)ds y ds α 0 Γ is a solution of the homogeneous heat equation for (x, t) Q. The operator Ṽ : H 1 2, 1 4 (Σ) H 1, 1 2 (Q, α t x ) is linear and bounded. boundedness of the single layer boundary integral operator Jump relation V := γ0 int Ṽ : H 1 2, 1 1 4 (Σ) H 2, 1 4 (Σ). [γ 0 Ṽ w] = γ0 ext (Ṽ w) γint 0 (Ṽ w) = 0. 13

Adjoint double layer potential Adjoint double layer potential with density w and (x, t) Σ (K w)(x, t) := 1 α t 0 Γ n x U (x y, t s)w(y, s)ds y ds. The operator K : H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ) is linear and bounded and γ int 1 (Ṽ w) = 1 2 w + K w. Jump relation [γ 1 Ṽ w] = γ1 ext (Ṽ w) γint 1 (Ṽ w) = w. 14

Double layer potential Double layer potential with density v (Wv)(x, t) := 1 α t 0 Γ n y U (x y, t s)v(y, s)ds y ds is a solution of the homogeneous heat equation for (x, t) Q The operator W : H 1 2, 1 4 (Σ) H 1, 1 2 (Q, α t x ) is linear and bounded. boundedness of γ int 0 W : H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ). 15

Double layer boundary integral operator with density v and (x, t) Σ (Kv)(x, t) := 1 α t 0 Γ n y U (x y, t s)v(y, s)ds y ds. The operator K : H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ) is linear and bounded and Jump relation γ int 0 (Wv) = 1 2 v + Kv. [γ 0 Wv] = γ ext 0 (Wv) γ int 0 (Wv) = v. 16

Hypersingular boundary integral operator Hypersingular boundary integral operator with density v and (x, t) Σ (Dv)(x, t) := γ int 1 (Wv)(x, t). The operator D : H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ) is linear and bounded. Jump relation [γ 1 Wv] = γ ext 1 (Wv) γ int 1 (Wv) = 0. 17

Boundary integral equations Representation formula for ( x, t) Q u( x, t) = (Ṽ γint 1 u)( x, t) (W γ int 0 u)( x, t) + ( M 0 u 0 )( x, t). Apply Dirichlet- and Neumann trace operators ( γ int 0 u ) ( 1 γ1 intu = 2 I K V ) ( γ int 1 D 2 I + K 0 u ) γ1 int }{{} u =: C Calderón-operator: C = C 2. ( M0 u + 0 M 1 u 0 ). 18

Theorem (Costabel 1990) There exists a constant c 1 > 0, such that ( ( ) ( ψ V K ψ ( ), ϕ) K c D ϕ) 1 ψ 2 + H 1 2, 4 1 (Σ) ϕ 2 H 1 2, 4 1 (Σ) for all (ψ, ϕ) H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ). Ellipticity of V and D, i.e. and Vw, w c V 1 w 2 H 1 2, 1 4 (Σ) Dv, v c D 1 v 2 H 1 2, 1 4 (Σ) for all w H 1 2, 1 4 (Σ) for all v H 1 2, 1 4 (Σ). 19

Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 20

Boundary element methods First boundary integral equation for (x, t) Σ γ int 0 u(x, t) = (V γ int 1 u)(x, t)+ 1 2 γint 0 u(x, t) (K γ int 0 u)(x, t)+(m 0 u 0 )(x, t). Direct approach: Find γ1 intu H 1 2, 1 4 (Σ), such that ( ) 1 V γ1 int u = 2 I + K g M 0 u 0 on Σ. Variational formulation is to find γ1 intu H 1 2, 1 4 (Σ), such that ( ) 1 V γ1 int u, τ Σ = 2 I + K g, τ Σ M 0 u 0, τ Σ for all τ H 1 2, 1 4 (Σ). Uniquely solvable due to ellipticity and boundedness of V. 21

Indirect approach: u( x, t) := (Ṽ w)( x, t) + ( M 0 u 0 )( x, t) for ( x, t) Q. Apply Dirichlet trace operator g(x, t) = (Vw)(x, t) + (M 0 u 0 )(x, t) for (x, t) Σ. Variational formulation is to find w H 1 2, 1 4 (Σ), such that Vw, τ Σ = g M 0 u 0, τ Σ for all τ H 1 2, 1 4 (Σ). Uniquely solvable due to ellipticity and boundedness of V. 22

Triangulation of Σ for n = 1, 2 Boundary Γ piecewise smooth with Γ = J j=1 Γ j. Σ = J j=1 Σ j with Σ j := Γ j (0, T ). Σ N = N l=1 σ l admissible decomposition of Σ. For each σ l exists j: σ l Σ j. σ l = χ l (σ) with reference element σ R n. Ω (0, T ) Assumptions: No curved elements. Boundary elements are shape regular. 23

Trial spaces Space of piecewise constant basis functions S 0 h (Σ) := span { ϕ 0 l } N l=1 with ϕ 0 l (x, t) := { 1 for (x, t) σ l, 0 else. Approximate w := γ int 1 u H 1 2, 1 4 (Σ) by w h (x, t) := N w l ϕ 0 l (x, t) S0 h (Σ). l=1 24

Galerkin-Bubnov variational formulation: Find w h Sh 0 (Σ), such that ( ) 1 Vw h, τ h Σ = 2 I + K g, τ h Σ M 0 u 0, τ h Σ for all τ h Sh 0 (Σ). Equivalent to with and for l, k = 1,..., N. V h w = f V h [l, k] = V ϕ 0 k, ϕ0 l Σ ( ) 1 f [l] = 2 I + K g, ϕ 0 l Σ M 0 u 0, ϕ 0 l Σ 25

Approximation properties For u H r,s (Σ) with r, s [0, 1] and for σ, µ [ 1, 0) u Q h u L2 (Σ) c (hr + h s t ) u H r,s (Σ) u Q h u H σ,µ (Σ) c ( h σ + h µ t ) (h r + h s t ) u H r,s (Σ). For n = 1: Terms with h vanish. For n = 2: h t denotes the size of an element in temporal direction, h the size in spatial direction. 26

Space of piecewise smooth functions For Σ j = Γ j (0, T ) and r, s 0 H r,s (Σ j ) := { v = ṽ Σj : ṽ H r,s (Σ) }. Space of piecewise smooth functions on Σ H r,s pw (Σ) := { v L 2 (Σ) : v Σj H r,s (Σ j ) for j = 1,..., J } with norm v H r,s pw (Σ) := J v Σj 2 j=1 H r,s (Σ j ) 1/2. 27

For r, s < 0 H r,s (Σ j ) := [ H r, s (Σ j ) ] and with norm H r,s pw (Σ) := w H r,s pw (Σ) := J H r,s (Σ j ) j=1 J Hr,s w Σj. (Σ j ) j=1 For w H r,s pw (Σ) with r, s < 0 we have w H r,s (Σ) w H r,s pw (Σ). 28

Error estimates Quasi-optimality of the solution w h S 0 h (Σ) w w h H 1 2, 1 4 (Σ) c J inf j=1 τ j h S0 h (Σ j ) w Σj τ j h H 1 2, 1 4 (Σ j ) For w Hpw r,s (Σ) with r, s [0, 1] ( ) w w h c H h 1/2 + h 1/4 1 2, 1 4 (Σ) t (h r + ht s ) w H r,s pw (Σ).. For n = 1 w w h L 2 (Σ) chs t w H s pw (Σ). 29

Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 30

Preconditioning V and D elliptic inf-sup condition. Find subspaces X h = span {ϕ k } N k=1 H 1 2, 1 4 (Σ) and Y h = span {ψ l } M l=1 H 1 2, 1 4 (Σ), such that (τ h, v h ) sup c1 M τ h 0 v h Y h v h 1 H, H 1 1 2, 1 4 (Σ) 2 4 (Σ) for all τ h X h and dimx h = dimy h. ( κ M 1 h ) D hm T h V h c where M h [l, k] = (ϕ k, ψ l ) for l, k = 1,..., N. 31

Different approaches for n = 1: Sh 0 (I) for V and D. Sh 1 (I) for V and D. Use dual mesh: Sh 1(I) for D and S0 h (Ĩ) corresponding to dual mesh for V (figure: Sample dual mesh for n = 1). 1 ϕ 0 1 ϕ 0 2 ϕ 0 3 ϕ 0 4 ϕ 0 5 ϕ 1 1 ϕ 1 2 ϕ 1 3 ϕ 1 4 ϕ 1 5 0 t 1 t 2 t 3 t 4 t 5 0 0.2 0.4 0.6 0.8 1 t 32

Numerical examples Uniform refinement. Ω = (0, 1), T = 1. Initial condition u 0 (x) = sin (2πx). Boundary condition g = 0. Sh 0 (I) for the discretization of V and D. L N w w h L2 (Σ) eoc κ(v h ) It. κ(c 1 V V h) It. 0 2 2,249 0 1,001 1 1,002 1 1 4 1,311 0,778 2,808 2 1,279 2 2 8 0,658 0,996 4,905 4 1,422 4 3 16 0,324 1,021 7,548 8 1,486 8 4 32 0,16 1,017 11,14 16 1,541 14 5 64 0,079 1,01 16,724 31 1,563 13 6 128 0,04 1,006 13,47 41 1,59 13 7 256 0,02 1,003 22,053 50 1,615 12 8 512 0,01 1,001 32,043 59 1,636 12 9 1024 0,005 1,001 60,957 70 1,777 11 10 2048 0,002 1,000 88,488 82 1,762 11 11 4096 0,001 1,000 125,957 96 1,765 10 33

Adaptive refinement. Ω = (0, 1), T = 1. Initial condition u 0 (x) = 5 exp ( 10t) sin (πx). Boundary condition g = 0. Sh 0 (I) for the discretization of V and D. 15 10 x = 0 x = 1 wh(, t) 5 0 0 0.2 0.4 0.6 0.8 1 t 34

C V = diagv h C V = M h D 1 h M h L N w w h L2 (Σ) κ(v h ) It. κ(c 1 V V h) It. κ(c 1 V V h) It. 0 2 1,886 1,001 2 1,001 2 1,002 2 1 3 1,637 3,972 3 2,553 3 1,16 3 2 5 1,272 12,225 5 4,055 4 1,166 4 3 7 0,914 34,212 7 3,611 6 1,156 6 4 9 0,615 92,081 9 3,164 8 1,149 8 5 11 0,401 118,586 11 2,945 10 1,224 10 6 13 0,267 338,26 13 2,803 12 1,21 12 7 20 0,166 621,773 20 3,524 18 1,197 13 8 31 0,101 1608,08 31 4,457 27 1,252 12 9 47 0,063 2344,9 47 5,779 32 1,574 11 10 74 0,039 6141,47 74 8,348 37 1,692 11 11 114 0,024 8409,92 114 10,95 42 1,561 10 12 177 0,015 23007,6 173 14,324 47 1,716 10 13 278 0,01 27528,3 200 21,094 53 1,677 10 35

Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 36

FEM-BEM coupling Transmission problem α t u i (x, t) div x [A(x, t) x u i (x, t)] = f (x, t) for (x, t) Ω (0, T ), α t u e (x, t) u e (x, t) = 0 for (x, t) Ω ext (0, T ), u i (x, 0) = u 0 (x) for x Ω, u e (x, 0) = 0 where f L 2 (0, T ; H 1 (Ω)), u 0 H 1 0 (Ω). Transmission conditions for (x, t) Σ for x Ω ext u i (x, t) = u e (x, t), n x [A(x, t) x u i (x, t)] = n x u e (x, t) =: w e (x, t). Radiation condition for x. 37

Representation formula for ( x, t) Ω ext (0, T ) u e ( x, t) = 1 α + 1 α T 0 Γ T 0 Γ n y u e (y, s)u ( x y, t s)ds y ds u e (y, s) n y U ( x y, t s)ds y ds. Apply Dirichlet-trace operator γ ext 0 u e = V γ ext 1 u e + ( ) 1 2 I + K γ0 ext u e on Σ. 38

Variational formulation Consider decomposition u i (x, t) = u i (x, t) + u 0 (x, t) for (x, t) Q where u 0 L 2 (0, T ; H 1 0 (Ω)) H1 (0, T ; H 1 (Ω)) is an extension of u 0. Find u i L 2 (0, T ; H 1 (Ω)) H 1 (0, T ; H 1 (Ω)) with u i (x, 0) = 0 for x Ω, such that for all v L 2 (0, T ; H 1 (Ω)). Bilinear form a(u, v) := α Q a(u i, v) w i, v Σ = f, v Q a(u 0, v) t u(x, t)v(x, t)dxdt+ [A(x, t) x u(x, t)] x v(x, t)dxdt. Q 39

Variational formulation BIE: Find w e X, such that ( ) 1 Vw e, τ Σ + 2 I K u e, τ Σ = 0 for all τ X. Transmission conditions u i Σ = u i Σ = u e Σ and w i = w e Find u i L 2 (0, T ; H 1 (Ω)) H 1 (0, T ; H 1 (Ω)) with u i (x, 0) = 0 for x Ω and w e X, such that a(u i, v) w e, v Σ = f, v Q a(u 0, v), ( ) 1 Vw e, τ Σ + 2 I K u i, τ Σ = 0 for all v L 2 (0, T ; H 1 (Ω)) and τ X. 40

Triangulation Admissible triangulation T h = {T k } N Q k=1 of Q. M Q... Number of nodes I 0... Index set of nodes not belonging to Ω {0} M 0 := I 0 I I... Index set of nodes not belonging to Σ (Ω {0}) M I := I I Node sorting: I I {1,..., M I }, I 0 {1,..., M 0 }. Boundary elements E h = {σ k } N Σ k=1 given by E h := { σ Σ : T T h : σ = T Σ }. 41

Sample triangulation 1D 1 0.8 0.6 T h E h Nodes I 0 Nodes I I t 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 x 42

Trial spaces Sh 0(Σ) = span { ϕ 0 k functions. Sh 1(Q) = span { ϕ 1 i basis functions. } NΣ k=1 } MQ i=1 space of piecewise constant basis space of piecewise linear and continuous Sh,0 1 (Q) functions in S1 h (Q) vanishing on Ω {0}, i.e. Sh,0 1 (Q) = span { } ϕ 1 M0 i i=1. Approximate w e and u i by N Σ w e,h = w k ϕ 0 k S0 h (Σ), u M 0 i,h = u j ϕ 1 j k=1 j=1 S 1 h,0 (Q). 43

Galerkin variational formulation Let u 0,h be the interpolation of u 0 in S 1 h (Q). Find u i,h Sh,0 1 (Q) and w e,h Sh 0 (Σ), such that a(u i,h, v h ) w e,h, v h Σ = f, v h Q a(u 0,h, v h ), ( ) 1 Vw e,h, τ h Σ + 2 I K u i,h, τ h Σ = 0 for all v h S 1 h,0 (Q) and τ h S 0 h (Σ). 44

Equivalent system of linear equations with A QQ A QΣ A ΣQ A ΣΣ M T h 1 2 M h K h V h uq u Σ w = f Q f Σ 0 A[j, i] = a(ϕ 1 i, ϕ1 j ), M Q f [j] = f, ϕ1 j Q u0 r a(ϕ 1 r, ϕ 1 j ) r=1 for i, j = 1,..., M 0 and M h [l, i] = ϕ 1 M I +i, ϕ0 l Σ, K h [l, i] = K ϕ 1 M I +i, ϕ0 l Σ, V h [l, k] = V ϕ 0 k, ϕ0 l Σ for i = 1,..., M 0 M I and k, l = 1,..., N Σ. 45

Numerical example Ω = (0, 1), T = 1, A 1, f 0, initial condition ( ) 1 exp u 0 (x) = (2x 1) 2 sin (πx) for x (0, 1), 1 0 else. L N Q N Σ u i u L i,h 2 (Q) eoc 0 8 4 0.031618 0 1 32 8 0.015779 1.003 2 128 16 0.004223 1.902 3 512 32 0.001119 1.915 4 2048 64 0.000290 1.951 5 8192 128 0.000074 1.974 46

Outlook Space-time error estimator for anisotropic BEM Ω R 3 Implementation... 47