Systematic Design of Operational Amplifiers

Similar documents
Amplifiers, Source followers & Cascodes

Stability of Operational amplifiers

Feedback Transimpedance & Current Amplifiers

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Design of crystal oscillators

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

University of Toronto. Final Exam

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Lecture 37: Frequency response. Context

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

ECE 6412, Spring Final Exam Page 1

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Advanced Current Mirrors and Opamps

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Electronic Circuits Summary

Electronics II. Midterm II

Homework Assignment 08

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

EECS 141: FALL 05 MIDTERM 1

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Lecture 04: Single Transistor Ampliers

ESE319 Introduction to Microelectronics. Feedback Basics

Maxim Integrated Products 1

6.012 Electronic Devices and Circuits Spring 2005

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Advantages of Using CMOS

Frequency Detection of CDRs (1)

ECE 546 Lecture 11 MOS Amplifiers

Circle the one best answer for each question. Five points per question.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

6.2 INTRODUCTION TO OP AMPS

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Biasing the CE Amplifier

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Homework Assignment 09

ECE315 / ECE515 Lecture 11 Date:

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

ECEN 610 Mixed-Signal Interfaces

ESE319 Introduction to Microelectronics. Feedback Basics

PRACTICE PROBLEMS FOR CMOS ANALOG CIRCUIT DESIGN, 2 ND EDITION

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Sample-and-Holds David Johns and Ken Martin University of Toronto

L4970A 10A SWITCHING REGULATOR

CHAPTER 6 CMOS OPERATIONAL AMPLIFIERS

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

Lecture 5: DC & Transient Response

The CMOS Inverter: A First Glance

Preamplifier in 0.5µm CMOS

55:041 Electronic Circuits The University of Iowa Fall Exam 2

Analog Circuit Design Discrete & Integrated

SHM-14 Ultra-Fast, 14-Bit Linear Monolithic Sample-Hold Amplifiers

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

MOS Transistor I-V Characteristics and Parasitics

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

2N5545/46/47/JANTX/JANTXV

EXAMPLE DESIGN PART 2

Practice 7: CMOS Capacitance

ECE 342 Electronic Circuits. 3. MOS Transistors

55:041 Electronic Circuits The University of Iowa Fall Final Exam

ECE 497 JS Lecture - 12 Device Technologies

MC MC35172 LOW POWER DUAL BIPOLAR OPERATIONAL AMPLIFIERS.. GOOD CONSUMPTION/SPEED RATIO : ONLY 200µA/Amp FOR 2.1MHz, 2V/µs

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Electronics II. Final Examination

6.012 Electronic Devices and Circuits

At point G V = = = = = = RB B B. IN RB f

EE5311- Digital IC Design

Chapter 4 Field-Effect Transistors

ELEN 610 Data Converters

The current source. The Active Current Source

Exact Analysis of a Common-Source MOSFET Amplifier

Spectral Analysis of Noise in Switching LC-Oscillators

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Electronics and Communication Exercise 1

Transcription:

Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061

Table of contents Design of Single-stage OTA Design of Miller CMOS OTA Design for GBW and Phase Margin Other specs: Input range, output range, SR,... Ref.: Sansen : Analog design essentials, Springer 2006 Willy Sansen 10-05 062

Single-stage CMOS OTA : GBW M7 V DD A v = r o g m1 2 I B v- 2 M1 3 M2 1 v + v OUT C L BW = if r o2 = r o4 = r o 1 r 2π o (C L +C n1 ) 2 M3 M4 V SS GBW = g m1 2π (C L +C n1 ) Willy Sansen 10-05 063

CMOS OTA : Maximum GBW GBW = g m1 g m1 = I B 2π C L V GS1 -V T I B v- v C L + C L GBW max = I B V GS1 -V T 1 2π C L v OUT+ v OUT- 0.2 V I B = 10 µa C L = 1 pf GBW max 10 MHz FOM = GBW.C L = 1000 I B [8] [800] MHzpF/mA Willy Sansen 10-05 064

Single stage CMOS OTA : f nd M7 V DD GBW = g m1 2π (C L +C n1 ) I B v- M1 3 M2 v + v OUT f nd = g m3 2π C n2 C n2 2C GS3 + C DB3 + C DB1 2 1 C L 4 C GS3 M3 M4 V SS f nd f T3 4 Willy Sansen 10-05 065

Simple CMOS OTA : f nd M5 A v 2x - M1 3 M2 + 0 o 2x f f v OUT -90 o C n2 2 1 M3 M4 f = g m3 nd 2π C n2 f nd 2f nd GBW GBW PM = 90 o - arctan + arctan 85 2 f o nd f nd Willy Sansen 10-05 066

Single stage CMOS OTA : Design 1 GBW = 100 MHz for C L = 2 pf Techno: L min = 0.35 µm; K n = 60 µa/v 2 & K p = 30 µa/v 2 I DS? W? L? gm = GBW 2π CL = 1.2 ms VGS-VT = 0.2 V IDS = gm V GS-VT 2 = g m 10 = 0.12 ma W L = IDS K'(VGS-VT)2 =100 Lp =Ln =1 µm GAIN! Wp = 100 µm; Wn = 50 µm Willy Sansen 10-05 067

Table of contents Design of Single-stage OTA Design of Miller CMOS OTA Design for GBW and Phase Margin Other specs: Input range, output range, SR,... Willy Sansen 10-05 068

Miller CMOS OTA 5 M7 1 : B M5 V DD Two nodes 1 4 v - 3 + C c M1 M2 v 4 v OUT with high Impedance 2 1 M6 R L C L cause two poles M3 M4 C n1 split by C c V SS Willy Sansen 10-05 069

Miller CMOS OTA : small-signal v - 2 M3 M1 3 M2 1 M4 v + C c C n1 4 v OUT M6 Z L GBW= 1MHz C L = 10 pf R L = 10 kω g m1 = 7.5 µs g o24 = 0.03 µs 1 C c 4 C n1 = 0.37 pf C c = 1 pf g m6 = 246 µs g Lo6 = 20 µs g m1 g o24 C n1 g m6 g Lo6 C Ln4 = 10.2 pf I DS1 = 1.1 µa I DS6 = 25 µa Willy Sansen 10-05 0610

Miller CMOS OTA : GBW 5 M7 1 : B M5 g m1 A v1 = go24 A v2 = g m6 glo6 v - 3 + C c M1 M2 v 4 v OUT BW = g o24 2π A v2 C c R L C L g m1 2 M3 1 M4 C n1 M6 f nd GBW = 2π C c g m6 2π C Ln4 1 1+ C n1 C c Willy Sansen 10-05 0611

Miller CMOS OTA : poles and zero C c 1pF 0.1pF 10fF A v 1000 100 10 1 0.1 C ct f d f C ct 20 ff 1k 1M Hz A A v2 v0 but is sufficient C c = 0 for C c = 1pF BW C c = 1pF 1k GBW 1M f nd f z f Pole splitting starts at f z = C n1 g m6 2π C c Willy Sansen 10-05 0612

Table of contents Design of Single-stage OTA Design of Miller CMOS OTA Design for GBW and Phase Margin Other specs: Input range, output range, SR,... Willy Sansen 10-05 0613

Miller CMOS OTA: Design plan GBW = g m1 2π C c GBW = 100 MHz and C L = 2 pf f nd g m6 1 2π C Ln4 1+ C n1 C c Two equations for Three variables g m1, g m6 and C c?!? Solution : choose g m1 or g m6 or C c!!! Willy Sansen 10-05 0614

What is wrong with choosing C c = 1 pf? Willy Sansen 10-05 0615

Miller CMOS OTA: Design vs C c Choose C c 3 C n1 GBW = g m1 2π C c g m6 4 C L g m1 C c 3GBW g m6 2π C Ln4 1 1.3 GBW = 100 MHz and C L = 2 pf Choose C n1 < C c < C L Choice C c = 1 pf gives g m1 = 0.63 ms and g m6 = 5.0 ms Willy Sansen 10-05 0616

Miller CMOS OTA: Design vs C c g m g m6 g m6min = 3 GBW (2π C L ) g m1 g m6min C c C copt 4 C L Willy Sansen 10-05 0617

1 MHz Miller CMOS OTA: Design vs C c 2 1.8 ms GBW = 1 MHz C n1 ct 1.6 1.4 1.2 g mtot 2g m1 C L = 10 pf C n1 =0.4 pf 1 K = 20 µa/v 2 C n1 ~ g m6 0.8 0.6 0.4 V GS -V T = 0.2 V L = 10 µm 0.2 g m6 0 0.01 0.1 1 10 100 pf C c C n1 = 0.4 pf Willy Sansen 10-05 0618

Miller CMOS OTA : Design vs I DS6 Area g m6min = Area C c 3 GBW (2π C L ) Area M6 g m6 g m6min g m6opt 1.3 g m6min + 30 % Willy Sansen 10-05 0619

Miller CMOS OTA : Design vs I DS1 Area Area M6?!? Area C c C L g m1 Willy Sansen 10-05 0620

Optimum design for high speed Miller OTA - 1 GBW = g m1 C L = α C c α 2 f nd = 2π C c g m6 2π C L 1 1 + Cn1 /Cc C c = β C n1 = β C GS6 β 3 f nd = γ GBW γ 2 C GS = kw k= 210-11 F/cm GBW = f nd γ = g m6 2π C L 1 γ (1 + 1/ β) C L = α C c = α β C n1 = α β C GS6 = α β kw 6 W 6 if C L Willy Sansen 10-05 0621

Optimum design Miller for high speed OTA - 2 Elimination of C L yields GBW = g m6 2π kw 6 1 α β γ (1 + 1/ β) 17 10-5 g m = W L 1 + 2.8 10 4 L /V GST f T6 W, L in cm GBW = 1 2π L 6 1 α β γ (1 + 1/ β) 8.5 10 6 1 + 2.8 10 4 L 6 / V GST6 L in cm GBW is not determined by C L, only by L (and V GST )!! f T is also determined by L!!! Willy Sansen 10-05 0622

Optimum design Miller for high speed OTA - 3 Substitution for f T yields f T = g m 2πC GS GBW = f T6 α β γ (1 + 1/ β) GBW is not determined by C L, only by f T f T is determined by L (and V GST )!!! 1.35 f T = 1 L 1 + 2.8 10 4 L / V GST L in cm f T in MHz If V GST = 0.2 V, v sat takes over for L < 65 nm (If 0.5 V for L < 0.15 µm) Willy Sansen 10-05 0623

Maximum GBW versus channel length L GBW GHz 10 1 V GS -V T 0.2 V v sat α 2 β 3 γ 2 or 16 x K 0.1 10 nm 100 nm L 1 µm GBW f T6 16 Willy Sansen 10-05 0624

Design optimization for high speed Miller OTA Choose α β γ Find minimum f T6 for specified GBW Choose maximum channel length L 6 (max. gain) for a chosen V GS6 -V T W 6 is calculated from C L, and determines I DS6 C c is calculated from C L through α g m1 and I DS1 are calculated from C c Noise is determined by g m1 or C c Willy Sansen 10-05 0625

Design Ex. for GBW = 0.4 GHz & CL = 5 pf Choose α β γ 2 3 2 Minimum f T6 for GBW = 0.4 GHz f T6 = 6.4 GHz Maximum channel length L 6 L 6 = 0.5 µm for a chosen V GS6 -V T = 0.2 V L 6 is taken to be the minimum L W 6 is calculated from C L, W 6 = 417 µm and determines I DS6 (K n = 70 µa/v2 ) I DS6 = 2.3 ma and determines C n1 (k = 2 ff/µm) C n1 = 0.83 pf C c is calculated from C L through α C c = 2.5 pf g m1 and I DS1 are calculated from C I c DS1 = 0.63 ma Willy Sansen 10-05 0626

Optimum design Miller for low speed OTA GBW = f T6 α β γ (1 + 1/ β) f T = f TH i (1 - e - i ) i for small i f TH = 2 µ kt/q 2π L 2 GBW is not determined by C L, only by f T f T is determined by L and i!!! Willy Sansen 10-05 0627

Design optimization for low speed Miller OTA Choose α β γ Find minimum f T6 for specified GBW Choose channel length L 6 (max. gain), which gives f TH6 Calculate i 6 W 6 is calculated from C L, and determines I DST6 and I DS6 C c is calculated from C L through α g m1 and I DS1 are calculated from C c Noise is determined by g m1 or C c Willy Sansen 10-05 0628

Design Ex. for GBW = 1 MHz & CL = 5 pf Choose α β γ 2 3 2 Minimum f T6 for GBW = 1 MHz f T6 = 16 MHz Maximum channel length L 6 L 6 = 0.5 µm gives f TH6 f TH6 = 2 GHz Inversion coefficient i is i = 0.008 W 6 is calculated from C L, W 6 = 417 µm and determines I DST6 (K n = 70 µa/v2 ) I DST6 = 0.33 ma and determines I DS6 I DS6 = 2.7 µa and determines C n1 (k = 2 ff/µm) C n1 = 0.83 pf C c is calculated from C L through α C c = 2.5 pf g m1 and I DS1 are calculated from C I c DS1 = 1.6 µa Willy Sansen 10-05 0629

Table of contents Design of Single-stage OTA Design of Miller CMOS OTA Design for GBW and Phase Margin Other : SR, Output Impedance, Noise,... Willy Sansen 10-05 0630

Miller CMOS OTA: Specifications 1 1. Introductory analysis 1.1 DC currents and voltages on all nodes 1.2 Small-signal parameters of all transistors 2. DC analysis 2.1 Common-mode input voltage range vs supply Voltage 2.2 Output voltage range vs supply Voltage 2.3 Maximum output current (sink and source) Willy Sansen 10-05 0631

Miller CMOS OTA: Specifications 2 3. AC and transient analysis 3.1 AC resistance and capacitance on all nodes 3.2 Gain versus frequency : GBW, 3.3 Gainbandwidth versus biasing current 3.4 Slew rate versus load capacitance 3.5 Output voltage range versus frequency 3.6 Settling time 3.7 Input impedance vs frequency (open & closed loop) 3.8 Output impedance vs frequency (open & closed loop) Willy Sansen 10-05 0632

Miller CMOS OTA: Specifications 3 4. Specifications related to offset and noise 4.1 Offset voltage versus common-mode input Voltage 4.2 CMRR versus frequency 4.3 Input bias current and offset 4.4 Equivalent input noise voltage versus frequency 4.5 Equivalent input noise current versus frequency 4.6 Noise optimization for capacitive/inductive sources 4.7 PSRR versus frequency 4.8 Distortion Willy Sansen 10-05 0633

Miller CMOS OTA: Specifications 4 5. Other second-order effects 5.1 Stability for inductive loads 5.2 Switching the biasing transistors 5.3 Switching or ramping the supply voltages 5.4 Different supply voltages, temperatures,... Willy Sansen 10-05 0634

M C O : Other specifications o Common-mode input voltage range o Output voltage range o Slew Rate o Output impedance o Noise Willy Sansen 10-05 0635

Miller CMOS OTA 5 M7 1 : B M5 V DD GBW = 1 MHz C L = 10 pf R L = 10 kω v - 3 + C c M1 M2 v 4 v OUT g m1 = 7.5 µs I DS1 = 1 µa R L C L g o24 = 0.03 µs 2 M3 1 M4 M6 V SS g m6 = 246 µs I DS6 = 25 µa C c = 1 pf Willy Sansen 10-05 0636

Miller CMOS OTA : CM Input Voltage Range 3V V ICM 2V V DD 1V V ICMmax 0V -1V V ICM -2V -3V V SS V ICMmin 0 1V 2V ±2.5V 3V 4V V DD = V SS Willy Sansen 10-05 0637

Miller CMOS OTA : Output Voltage Range 3V V OUT Rail-to-rail output if no R L V DD 2V V DD V OUTmax M5 1V 0V 4 v OUT -1V V OUT R L C L -2V -3V V SS V OUTmin 0 1V 2V ±2.5V 3V 4V V DD = V SS Willy Sansen 10-05 0638

Miller CMOS OTA : Slew Rate - 1 v 5 3 M1 M7 1 : B I B1 I B1 - C c M5 4 V DD v OUT Switch input : v + > 1 v - > 0 2 1 M6 R L C L SR = V OUT t M3 M4 V SS SR = I B1 C c Willy Sansen 10-05 0639

Miller CMOS OTA : Slew Rate - 2 v IN v IN t t v OUT v OUT SR SR t SR SR V OUTmax t SR V OUTmax f max 4 V OUTmax SR 4 fmax SR T max 4 Willy Sansen 10-05 0640

Miller CMOS OTA : Slew Rate - 3 V p 2 V OUT V OUTmax SR 4 fmax 1.5 1 SR = 2.2 V/µs 0.5 0 0 0.2M 0.4M 0.6M 0.8M 1MHz f Willy Sansen 10-05 0641

Design for GBW or SR? SR GBW = 4π I DS1 g m1 I DS1 V = GS1 -V T g m1 2 I DS1 g m1 = nkt q 0.1... 0.3 V for MOST (si) x10 30 50 mv for MOST (wi) I CE1 kt g m1 = q 26 mv for Bipolar trans. I CE1 g m1 = (1 + g m1 R E ) kt q... 0.5 V with R E Solomon, JSSC Dec 74, 314-332 Willy Sansen 10-05 0642

High SR by g m reduction V DD I B I B SR v- n : 1 M3 M1 M2 1 : n M4 v+ 2π GBW = x (n+1) v OUT C L M5 M6 V SS Ref. Schmoock, JSSC Dec.75, 407-411 Willy Sansen 10-05 0643

External vs internal Slew Rate V DD M5 I DS5 SR int = I B C c I B C c 4 v OUT I DS5 SR ext = is larger! C L 1 M6 C L g m6 = 4 CL g m1 C c = I DS5 I DS1 M4 V SS I DS5 C L 2 2I DS1 C c Willy Sansen 10-05 0644

Slew Rate and settling v IN t t TOT = t Slew + t 0.1 v OUT V OUT 0.1 % t Slew = V OUT SR SR t t 0.1 = 7 2π BW t Slew t 0.1 ln (1000) 7 Willy Sansen 10-05 0645

Miller CMOS OTA Output Impedance M7 1 : B M5 V DD GBW = 1 MHz C L = 10 pf 5 v - 3 + C c M1 M2 2 1 M3 M4 v 4 Z OUT M6 V SS g m1 = 7.5 µs R L I DS1 = 1 µa C L Z OUTCL g o24 = 0.03 µs g m6 = 246 µs I DS6 = 25 µa C c = 1 pf Willy Sansen 10-05 0646

Miller CMOS OTA : Output impedance Z OUT Z OUT 1/g o56 0.5 MΩ A v20 open loop 1/g m6 4 kω f z = g o24 2πC c f z 4.8 khz A v10 A v with C L closed loop f f d f z GBW f nd Willy Sansen 10-05 0647

Miller CMOS OTA : Noise density 1 dv in1 2 dv in2 2 C c 1 4 v OUT v in v n1 g o24 C n1 g Lo6 C L v neq g m1 v in g m6 v n1 dv 2 4/3 in1 4kT df dv 2 in2 g m1 2/3 4kT g df m6 Willy Sansen 10-05 0648

Miller CMOS OTA : Noise density 2 dv eq 2 dv in1 2 A v10 2 Dominant on linear frequency scale! 4kT df 2/3 g m6 dv neq2 2 = dv neq2 2 A v10 = go24 dv in2 2 A v1 2 g m1 f z GBW f nd f f z = g o24 2πC c Willy Sansen 10-05 0649

Miller CMOS OTA : Integrated Noise A 1 GBW f GBW n π = 2 GBW v nieq 2 = 0 dv nieq 2 1 + (f/ GBW) 2 0 v 2 4/3 nieq = 4kT GBW π 2 g m1 dx 1 + x 2 = π 2 C c = 1pF v Rs = 74.5 µv RMS v 2 4 nieq = 3 kt C c Willy Sansen 10-05 0650

Noise density vs integrated noise A dv ni 2 4/3 = 4kT df g m BW BW n f v ni 2 = dv ni 2 0 1 + (f/ BW) 2 = 4kT 3C c Noise density (V 2 /Hz) ~ 1/g m (or R S ) Integrated noise (V RMS ) ~ 1/C c Willy Sansen 10-05 0651

CMOS Miller OTA layout V SS IN+ IN- GBW = 1 MHz C L = 10 pf SR = 2.2 V/µs V DD = 5 V I TOT = 27 µa OUT I B 370 MHzpF/mA V DD Willy Sansen 10-05 0652

Miller CMOS OTA : Exercise GBW = 50 MHz for C L = 2 pf : use min. I DS6! Techno: L min = 0.5 µm; K n = 50 µa/v 2 & K p = 25 µa/v 2 C GS = kw (= C ox WL) and k = 2 ff/ µm V GS -V T = 0.2 V Find g m6 I DS6 W 6 C n1 = C GS6 C c g m1 I DS1 dv ineq 2 v inrms Willy Sansen 10-05 0653

Conclusion : Table of contents Design of Single-stage OTA Design of Miller CMOS OTA Design for GBW and Phase Margin Other specs: Input range, output range, SR,... Willy Sansen 10-05 0654