DOMINO TILINGS INVARIANT GIBBS MEASURES

Similar documents
Uniqueness of the maximal entropy measure on essential spanning forests. A One-Act Proof by Scott Sheffield

Dimer Problems. Richard Kenyon. August 29, 2005

CONSTRAINED PERCOLATION ON Z 2

MONOMER CORRELATIONS ON THE SQUARE LATTICE. Mihai Ciucu Indiana University Department of Mathematics, Bloomington, IN 47405, USA

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M.

Domino shuffling and TASEP. Xufan Zhang. Brown Discrete Math Seminar, March 2018

POSITIVE AND NEGATIVE CORRELATIONS FOR CONDITIONAL ISING DISTRIBUTIONS

18.175: Lecture 2 Extension theorems, random variables, distributions

arxiv: v2 [math.pr] 26 Aug 2017

Random geometric analysis of the 2d Ising model

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice

Antiferromagnetic Potts models and random colorings

Root systems and optimal block designs

Determinant density and the Vol-Det Conjecture

Percolation and Random walks on graphs

Lecture 1. Toric Varieties: Basics

Locally definable groups and lattices

Cellular Automata and Tilings

The near-critical planar Ising Random Cluster model

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Problem Set 2: Solutions Math 201A: Fall 2016

Lattice spin models: Crash course

Lectures on dimers. Richard Kenyon

DETERMINANTAL SPANNING FORESTS ON PLANAR GRAPHS. By Richard Kenyon Brown University

TORIC WEAK FANO VARIETIES ASSOCIATED TO BUILDING SETS

Lebesgue Measure. Dung Le 1

Enumeration of domino tilings of a double Aztec rectangle

Theorem (Special Case of Ramsey s Theorem) R(k, l) is finite. Furthermore, it satisfies,

The Arctic Circle re-revisited

Ω = e E d {0, 1} θ(p) = P( C = ) So θ(p) is the probability that the origin belongs to an infinite cluster. It is trivial that.

CHOOSING A SPANNING TREE FOR THE INTEGER LATTICE UNIFORMLY

A dyadic endomorphism which is Bernoulli but not standard

Percolation and number of phases in the two-dimensional Ising model

Lecture 4: Applications: random trees, determinantal measures and sampling

25.1 Ergodicity and Metric Transitivity

Béatrice de Tilière. Université Pierre et Marie Curie, Paris. Young Women in Probability 2014, Bonn

Cluster algebras, snake graphs and continued fractions. Ralf Schiffler

2 IGOR PAK so we loose some information about the structure of the tilings since there could be many tilings of with the same multiset of tiles (see e

Math 6510 Homework 11

arxiv:math/ v1 [math.pr] 29 Nov 2002

MONOTONE COUPLING AND THE ISING MODEL

Linear Classification: Linear Programming

Triangulations and soliton graphs

Counting Clusters on a Grid

18.175: Lecture 3 Integration

Statistics for Financial Engineering Session 2: Basic Set Theory March 19 th, 2006

Nonamenable Products are not Treeable

e j = Ad(f i ) 1 2a ij/a ii

SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III. THE CASE OF TOTALLY ORDERED SETS

Permutation Groups and Transformation Semigroups Lecture 4: Idempotent generation

Spectral Continuity Properties of Graph Laplacians

Lectures on dimers. Richard Kenyon

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

SYMPLECTIC GEOMETRY: LECTURE 5

Pigeonhole Principle and Ramsey Theory

1.1. MEASURES AND INTEGRALS

arxiv: v3 [math.ds] 23 May 2017

Dilated Floor Functions and Their Commutators

Generalized Pigeonhole Properties of Graphs and Oriented Graphs

Determinantal Probability Measures. by Russell Lyons (Indiana University)

Arithmetic properties of the adjacency matrix of quadriculated disks

TORIC REDUCTION AND TROPICAL GEOMETRY A.

Propp-Wilson Algorithm (and sampling the Ising model)

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Graph coloring, perfect graphs

Determinantal spanning forests on planar graphs

Algebraic Methods in Combinatorics

Cayley Graphs of Finitely Generated Groups

Theorems of Erdős-Ko-Rado type in polar spaces

arxiv:math/ v1 [math.pr] 10 Jun 2004

Towards conformal invariance of 2-dim lattice models

arxiv: v4 [math.pr] 1 Sep 2017

Math 121 Homework 4: Notes on Selected Problems

Tiling expression of minors

Lebesgue Measure on R n

Linear Classification: Linear Programming

LECTURE 11: SYMPLECTIC TORIC MANIFOLDS. Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8

The Minesweeper game: Percolation and Complexity

Operations that preserve the covering property of the lifting region

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Stochastic domination in space-time for the supercritical contact process

Entropy, mixing, and independence

RS Chapter 1 Random Variables 6/5/2017. Chapter 1. Probability Theory: Introduction

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012

Decompositions of graphs into cycles with chords

Secant varieties of toric varieties

The cocycle lattice of binary matroids

Hodge theory for combinatorial geometries

On the smoothness of the conjugacy between circle maps with a break

Flip dynamics on canonical cut and project tilings

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

TREE AND GRID FACTORS FOR GENERAL POINT PROCESSES

Lecture Notes Introduction to Ergodic Theory

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

Lecture Notes 1: Vector spaces

Organization Team Team ID#

RICCI SOLITONS ON COMPACT KAHLER SURFACES. Thomas Ivey

Part III. 10 Topological Space Basics. Topological Spaces

QUIVERS AND LATTICES.

Transcription:

DOMINO TILINGS and their INVARIANT GIBBS MEASURES Scott Sheffield 1

References on arxiv.org 1. Random Surfaces, to appear in Asterisque. 2. Dimers and amoebae, joint with Kenyon and Okounkov, to appear in Annals of Mathematics. 3. Maximal entropy measures on essential spanning forests, to appear in Annals of Probability. 2

3 dbwilson.com

dbwilson.com 4

Height functions Let Ω be the set of all valid height functions φ : Z 2 R, i.e., functions with differences 3/4 or 1/4 when crossing any edge (black vertex on left) and φ((0, 0)) Z. Let F be the product σ-algebra on Ω and F τ the smallest sub-σ-algebra in which differences in height of the form φ(y) φ(x) are measurable. A measure µ on (Ω, F) is called a measure on heights. A measure µ on (Ω, F τ ) is called a measure on tilings. 5

Gibbs measures A measure µ on (Ω, F τ ) is called a gradient Gibbs measure or Gibbs measure on tilings if conditioned on the tiles outside of a region R, all ways of extending the tiling to that region are equally likely. A Gibbs measure µ is extremal if it is an extreme point of the convex set of all Gibbs measures or, equivalently, if it satisfies a zero one law on tail events. Let L be the set of chessboard-coloring preserving translations of Z 2. An L-invariant measure µ is L-ergodic if it is an extreme point of the convex set of L-invariant measures or, equivalently, if µ satisfies a zero-one law on L-invariant events. 6

Important facts 1. Every Gibbs measure can be uniquely written as a weighted average of extremal Gibbs measures. 2. Every L-invariant measure can be uniquely decomposed into L-ergodic measures. A measure µ is Gibbs if and only if its L-ergodic components are a.s. Gibbs. 3. If µ is extremal, and Λ n are increasing finite subsets of Z 2 whose union is Z 2, then µ = limφγ Λn for almost all φ. (Here γ Λn is the usual rerandomize on Λ n kernel.) 7

In other words... To sample from an L-invariant measure µ on tilings, you can 1. First sample an L-ergodic component µ 1 of µ. 2. Then sample an extremal component µ 2 of µ 1. 3. Then sample an actual tiling from µ 2. 8

Another important fact We say a Gibbs measure (Ω, F τ ) is smooth if it can be realized as the restriction to F τ of a Gibbs measure on (Ω, F). Clearly, a Gibbs measure is smooth if and only if almost all of its extremal components are smooth. If µ is an extremal Gibbs measure (Ω, F), then the µ probability distribution on height at a point is log concave in particular, it has moments of all order. 9

Define slope of an L-invariant µ by Slope S(µ) = (µ(φ(2, 0) φ(0, 0)),µ(φ(0, 2) φ(0, 0))). Note that S(µ) = (P S P N, P E P W ) where P N, P S, P E, P W are densities of dominos that point north, south, east west from their black square. The four brickwork singletons have slopes (±1, 0) and (0, ±1). All possible slopes lie in convex hull of these; let U be its interior. 10

Q: What are the L-ergodic Gibbs measures? 1. 1965: Kasteleyn publishes The statistics of dimer arrangements on a lattice. 2. 1975: Messager and Miracle-Solé classify ergodic Gibbs measures for the Ising model. 3. 1993: Burton and Pemantle prove uniqueness of zero slope ergodic Gibbs measure using spanning tree result (error found by Lyons, 2002; new proof by S, 2004). 4. 1996: Cohn, Elkies, and Propp conjecture existence of unique L-ergodic, slope u Gibbs measure for u U. 5. 2000: Cohn, Kenyon, Propp give explicit formulae for slope u Gibbs measures in domino tiling case. 6. 2003: Kenyon, Okounkov, S give explicit formulae for general weighted doubly periodic lattices involving amoebae of Harnack curves. 11

A: Exists a unique one of each slope u U. 1. We will give a complete classification of the ergodic Gibbs measures of a given slope u. The hard part will proving the Cohn, Elkies, Propp conjecture that for each u U there is a unique ergodic Gibbs measure of slope u. 2. An adaptation of the Edwards-Sokal, Fortuin-Kasteleyn, Swendsen-Wang updates called cluster swapping enables us to extend the proof to any continuum or discrete height model with convex nearest neighbor potential (e.g., square ice, linear solid-on-solid models). 3. The approach also yields a soft proof for general models that crystal facets have slopes in the dual of the lattice of translation invariance. Algebraic proof given by Kenyon, Okounkov, S for periodic dimer models. 12

Easy part: When S(µ) U When the slope lies on the boundary, there are at most two directions (e.g., south and east) that the dominos can point. Every SW to NE diagonal row of black squares has all of its dominos point south or all of them point east. The L-ergodic measures are thus in one-to-one correspondence with one dimensional ergodic measures on {S, E} Z. 13

Next: Variational Principle Write µ Λ for restriction of µ to the finite set T 1,...T n of tilings of Λ. Write n FE Λ (µ) = µ(t i ) log µ(t i ) i=1 called the specific free energy or µ. SFE(µ) = lim n Λ n 1 FE Λn (µ), 14

Variational Principle If µ is an L-ergodic measure on tilings, then µ is a Gibbs measure if and only if SFE(µ) is minimal among all L-invariant measures with slope S(µ). Make an analogous definition if µ is a measure on pairs of tilings that is invariant under translations that translate both components in tandem. If µ has marginals µ 1, µ 2 then SFE(µ) SFE(µ 1 ) + SFE(µ 2 ). If µ is an L-ergodic measure on pairs of tilings and the average slope of the components of µ is u and SFE(µ) = SFE(µ u µ u ) = 2SFE(µ u ), where µ u is an L-ergodic Gibbs measure of slope u, then µ is Gibbs. 15

Infinite path lemma Lemma: If µ 1 and µ 2 are extremal Gibbs measures on tilings and µ 1 µ 2 a.s. the union of the two tilings contains no infinite path, then µ 1 = µ 2. 16

Couplings Suppose that µ 1 and µ 2 are distinct ergodic Gibbs measures, both of slope u U. How many infinite paths are in the union of tilings sampled from µ 1 µ 2? Previous lemma rules out zero. We now rule out having k infinite paths with positive probability when 1. when 2 k < (swapping) 2. when k = (Burton-Keane and swapping) 3. when k = 1 (height offsets, RSW, homotopy of countably punctured plane) 17

Swapping infinite paths Let R(µ 1 µ 2 ) be measure on tilings pairs defined as follows: to sample, first sample (φ 1, φ 2 ) from µ 1 µ 2. Then pick one of the infinite paths in the union and flip a coin to decide its orientation (whether height goes up or down by one when crossing it). For every other infinite path, determine its orientation by requirement that φ 2 = φ 1 assume only two integer values (say, zero and one) on infinite components. 18

If 2 k... FACT: unless u U it is a.s. possible to join together all of the infinite zero clusters (or all of the one clusters) with finitely many local changes to the two tilings. Hence the number of infinite clusters with height zero is an L-invariant function on tiling pairs such that µ, conditioned on this function assuming some value, is not a Gibbs measure. Hence R(µ 1 µ 2 ) is not Gibbs. However, it is easily seen that SFE(R(µ 1 µ 2 )) = SFE(µ 1 µ 2 ). Hence this has minimal specific free energy given its slope since the swappings don t change average slope and SFE(µ 1 µ 2 ) is minimal (by variational principle) so variational principle implies R(µ 1 µ 2 ) is Gibbs, a contradiction. 19

If 2 k... For any three zero clusters, we can almost surely join the three together with finitely many local moves. Thus, for some Λ n, there is a positive probability that there exists a connected component C 0 of the intersection of an infinite cluster C and Λ n whose removal breaks C into three infinite pieces. The expected number of such trifurcation clumps in Λ n grows linearly in Λ n. However, Burton and Keane proved that the total possible number of disjoint trifurcation clumps in Λ n is bounded above by Λ n, a contradiction. 20

If k = 1... In this case, µ 1 µ 2 almost surely there exists exactly one infinite path in the union of the two perfect matchings. Given sample (φ 1, φ 2 ) from µ 1 µ 2, we can define the average height difference to be the the limiting density of set of points on the side of the infinite path on which the height function of φ 2 minus that of φ 1 is largest. This difference is tail trivial property so it is also defined on extremal components. In this case, the µ i are clearly smooth. We can show that the extremal components of µ 1 and µ 2 are indexed by the limit of the average expectation of heights on n n grids centered at the origin. Call this limiting average height the height offset of the extremal measure. 21

Law on height offsets For i {1, 2} the µ i probability distribution on set of height offsets modulo one is ergodic under adding 1 2 (u, y) for y L. If µ 1 and µ 2 are distinct, these probability distributions on [0, 1) are mutual singular. In particular, µ 1 and µ 2 cannot be distinct if either component of u is irrational. If u has rational coordinates, then there are finitely many height offsets; each ergodic Gibbs measure decomposes into finitely many components. Let ν 1 and ν 2 be extremal components from µ 1 and µ 2 respectively. These are invariant under a full rank sublattice of Z 2. Normalize the height so that ν 1 and ν 2 both have height offsets in [0, 1). Let Γ be the set of points on the high side of the path. It satisfies the FKG inequality, i.e., increasing functions of Γ are non-negatively correlated. 22

FKG inequality result THEOREM: There exists no measure ρ on infinite simply connected subsets Γ of the squares of the Z 2 lattice such that 1. ρ is invariant under a full rank sublattice of translations of Z 2. 2. The boundary between Γ and its complement is almost surely an infinite path. 3. Increasing functions of Γ are non-negatively correlated. 23

Idea: take grid of boxes, look at possible topology of path in complement 24