The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Similar documents
The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

The Devices. Jan M. Rabaey

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Integrated Circuits & Systems

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

VLSI Design I; A. Milenkovic 1

FIELD-EFFECT TRANSISTORS

EE5311- Digital IC Design

The Devices. Devices

The Devices: MOS Transistors

MOSFET: Introduction

Lecture 4: CMOS Transistor Theory

MOS Transistor I-V Characteristics and Parasitics

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

Lecture 04 Review of MOSFET

2.CMOS Transistor Theory

Section 12: Intro to Devices

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

Section 12: Intro to Devices

ECE 497 JS Lecture - 12 Device Technologies

MOS Transistor Properties Review

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE321 Electronics I

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

EE 560 MOS TRANSISTOR THEORY

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Semiconductor Physics Problems 2015

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Long-channel MOSFET IV Corrections

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 12: MOS Capacitors, transistors. Context

Extensive reading materials on reserve, including

Chapter 4 Field-Effect Transistors

VLSI Design and Simulation

EE105 - Fall 2005 Microelectronic Devices and Circuits

Metal-oxide-semiconductor field effect transistors (2 lectures)

Lecture 12: MOSFET Devices

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Semiconductor Physics fall 2012 problems

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Lecture 11: MOS Transistor

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

ECE321 Electronics I

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Digital Integrated Circuits

MOS Transistor Theory

Lecture 5: CMOS Transistor Theory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 3: CMOS Transistor Theory

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Intrinsic Silicon

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

EECS130 Integrated Circuit Devices

ECE 546 Lecture 10 MOS Transistors

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

MOS Transistor Theory

Introduction and Background

Lecture 11: MOSFET Modeling

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS CAPACITOR AND MOSFET

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Long Channel MOS Transistors

Classification of Solids

VLSI Design The MOS Transistor

1. The MOS Transistor. Electrical Conduction in Solids

Practice 3: Semiconductors

Chapter 5 MOSFET Theory for Submicron Technology

1 cover it in more detail right away, 2 indicate when it will be covered in detail, or. 3 invite you to office hours.

MOSFET Capacitance Model

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

CMOS Inverter (static view)

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

ECE-305: Fall 2017 MOS Capacitors and Transistors

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Transcription:

igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002

Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models for SPICE simulation Analysis of secondary and deep-submicron effects Future trends

The iode B Al A SiO 2 p n Cross-section of pn-junction in an IC process A p n B One-dimensional representation Al A B diode symbol Mostly occurring as parasitic element in igital ICs

epletion Region p Charge ensity hole diffusion electron diffusion hole drift electron drift - ρ + n x istance (a) Current flow. (b) Charge density. Φ Φ 0 T Built-in potential N N A = ΦT ln 2 ni KT = = 26 mv at q 300K Electrical Field ξ x (c) Electric field. N A : acceptor concentrations N : donor concentrations n i : intrinsic carrier concentration Potential V ψ 0 -W 1 W 2 Zero-Bias x (d) Electrostatic potential.

iode Current eviation due to recombination

Forward Bias I I dnp, n _ dx p = qa n p0 = qa p W n p n p0 dn dx W 1 p e V Φ T 1 p n (W 2 ) L p I I dpn, p _ dx p = qa = qa p n p dp dx pn0 W W 2 n p n0 e V Φ T 1 p-region -W 1 0 W 2 I = I + p I n n-region x diffusion Typically avoided in igital ICs

Reverse Bias p n0 n p0 p-region -W 1 0 W 2 n-region x diffusion The ominant Operation Mode

Models for Manual Analysis V + I = I S (e V /φt 1) V + + I V on (a) Ideal diode model (b) First-order diode model

Junction Capacitance Junction Capacitance ( ) 1 0 0 0 2 2 Φ + = Φ + = A A si j A A si j N N N N A C V N N N N q A Q ε ε

iffusion Capacitance τ T : mean transit time Small signal capacitance

Secondary Effects 0.1 I (A) 0 0.1 25.0 15.0 5.0 0 5.0 V (V) Avalanche Breakdown

iode Model R S + V - I C

SPICE Parameters

What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron

The MOS Transistor Polysilicon Aluminum

MOS Transistors - Types and Symbols G G S NMOS Enhancement NMOS S epletion G G B PMOS S Enhancement S NMOS with Bulk Contact

Threshold Voltage: Concept S - V GS + G n+ n+ n-channel p-substrate epletion Region B

The Threshold Voltage

The Body Effect V T T 0 + γ ( ) 2Φ + V Φ = V 2 F S B F 0.9 0.85 V T (V) 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 V SB forward bias V T decrease V SB reverse bias V T increase 0.4-2.5-2 -1.5-1 -0.5 0 V BS (V)

Current-Voltage Relations A good ol transistor -4 x 10 6 VGS= 2.5 V 5 4 Resistive Saturation VGS= 2.0 V I (A) 3 V S = V GS -V T Quadratic Relationship 2 VGS= 1.5 V 1 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V S (V)

Transistor in Linear V V GS G > V T > V T V < S V S _ sat V GS S G V S I n + V(x) + n + L x p-substrate B MOS transistor and its bias conditions

Transistor in Saturation V GS G V S > V GS - V T S n+ - V GS - V T + n+ Pinch-off

Current-Voltage Relations Long-Channel evice

A model for manual analysis

Current-Voltage Relations The eep-submicron Era 2.5 x 10-4 2 Early Saturation VGS= 2.5 V 1.5 VGS= 2.0 V I (A) 1 VGS= 1.5 V Linear Relationship 0.5 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V S (V)

Velocity Saturation υ n (m/s) υ sat = 10 5 Constant velocity Constant mobility (slope = µ) ξ c = 1.5 ξ (V/µm)

Perspective I Long-channel device V GS = V Short-channel device V SAT V GS -V T V S

I versus V GS 6 x 10-4 2.5 x 10-4 5 4 quadratic 2 1.5 linear I (A) 3 I (A) 2 1 1 0 0 0.5 1 1.5 2 2.5 V GS (V) Long Channel 0.5 quadratic 0 0 0.5 1 1.5 2 2.5 V GS (V) Short Channel

I versus V S I (A) 6 x 10-4 5 4 3 2 VGS= 2.5 V Resistive Saturation VGS= 2.0 V V S = V GS -V T VGS= 1.5 V I (A) 2 1.5 1-4 2.5 x 10 VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V 1 VGS= 1.0 V 0.5 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V S (V) Long Channel 0 0 0.5 1 1.5 2 2.5 V S (V) Short Channel

A unified model for manual analysis G S B

Simple Model versus SPICE 2.5 x 10-4 V S =V SAT 2 1.5 Velocity Saturated I (A) 1 Linear 0.5 V SAT =V GT V S =V GT Saturated 0 0 0.5 1 1.5 2 2.5 V S (V)

A PMOS Transistor 0 x 10-4 VGS = -1.0V -0.2 VGS = -1.5V -0.4 I (A) -0.6 VGS = -2.0V Assume all variables negative! -0.8 VGS = -2.5V -1-2.5-2 -1.5-1 -0.5 0 V S (V)

Transistor Model for Manual Analysis

The Transistor as a Switch V GS V T S Ron I V GS = V R mid R 0 V /2 V V S

The Transistor as a Switch 7 x 105 6 5 R eq (Ohm) 4 3 2 1 0 0.5 1 1.5 2 2.5 V (V)

The Transistor as a Switch

MOS Capacitances ynamic Behavior

ynamic Behavior of MOS Transistor G C GS C G S C SB C GB C B B

The Gate Capacitance Polysilicon gate Source n + x d x d W rain n + L d Top view Gate-bulk overlap t ox Gate oxide n + L n + Cross section

Gate Capacitance G G G S C GC C GC C GC S S Cut-off Resistive Saturation Most important regions in digital design: saturation and cut-off

Gate Capacitance WLC ox C GC WLC ox C GC 2WLC ox WLC ox 2 C GC B C GCS = C GC WLC ox 2 C GCS C GC 3 V GS 0 V S /(V GS -V T ) 1 Capacitance as a function of VGS (with VS = 0) Capacitance as a function of the degree of saturation

iffusion Capacitance Channel-stop implant N A 1 Side wall W Source N Bottom x j L S Side wall Substrate N A Channel

Junction Capacitance

Linearizing the Junction Capacitance Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

Capacitances in 0.25 µm m CMOS process

The Sub-Micron MOS Transistor Threshold Variations Subthreshold Conduction Parasitic Resistances

Threshold Variations V T V T Long-channel threshold Low V S threshold Threshold as a function of the length (for low V S ) L V S rain-induced barrier lowering (for low L)

Sub-Threshold Conduction 10-2 10-4 Linear The Slope Factor I ~ I 0 e qv nkt GS, n =1+ C C ox I (A) 10-6 10-8 Quadratic S is V GS for I 2 /I 1 =10 10-10 Exponential 10-12 V T 0 0.5 1 1.5 2 2.5 V GS (V) Typical values for S: 60.. 100 mv/decade

Sub-Threshold I vs VGS qvgs nkt I I0e 1 e qv = kt S V S from 0 to 0.5V

Sub-Threshold I vs VS I qvgs qv = nkt kt I e 0 1 e S ( 1+ λ V ) S V GS from 0 to 0.3V

Summary of MOSFET Operating Regions Strong Inversion V GS >V T Linear (Resistive) V S <V SAT Saturated (Constant Current) V S V SAT Weak Inversion (Sub-Threshold) V GS V T Exponential in V GS with linear V S dependence

Parasitic Resistances G Polysilicon gate L rain contact V GS,eff S W R S R rain

Latch-up

Future Perspectives 25 nm FINFET MOS transistor