Besov-type spaces with variable smoothness and integrability

Similar documents
Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

NOTES ON THE HERZ TYPE HARDY SPACES OF VARIABLE SMOOTHNESS AND INTEGRABILITY

Variable Exponents Spaces and Their Applications to Fluid Dynamics

Function spaces with variable exponents

Hardy spaces with variable exponents and generalized Campanato spaces

HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH

INTERPOLATION IN VARIABLE EXPONENT SPACES

arxiv: v1 [math.ap] 12 Mar 2009

arxiv: v1 [math.fa] 8 Sep 2016

BESOV SPACES WITH VARIABLE SMOOTHNESS AND INTEGRABILITY

FRANKE JAWERTH EMBEDDINGS FOR BESOV AND TRIEBEL LIZORKIN SPACES WITH VARIABLE EXPONENTS

Wavelets and modular inequalities in variable L p spaces

AALBORG UNIVERSITY. Compactly supported curvelet type systems. Kenneth N. Rasmussen and Morten Nielsen. R November 2010

A Critical Parabolic Sobolev Embedding via Littlewood-Paley Decomposition

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces

Variable Lebesgue Spaces

A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE s

VECTOR-VALUED INEQUALITIES ON HERZ SPACES AND CHARACTERIZATIONS OF HERZ SOBOLEV SPACES WITH VARIABLE EXPONENT. Mitsuo Izuki Hokkaido University, Japan

COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES

Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces

THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1

VARIABLE EXPONENT TRACE SPACES

Smooth pointwise multipliers of modulation spaces

Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations

BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT

WEIGHTED VARIABLE EXPONENT AMALGAM SPACES. İsmail Aydin and A. Turan Gürkanli Sinop University and Ondokuz Mayıs University, Turkey

Boundedness of fractional integrals on weighted Herz spaces with variable exponent

PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES

BILINEAR OPERATORS WITH HOMOGENEOUS SYMBOLS, SMOOTH MOLECULES, AND KATO-PONCE INEQUALITIES

THE RADIAL LEMMA OF STRAUSS IN THE CONTEXT OF MORREY SPACES

FUNCTION SPACES WITH VARIABLE EXPONENTS AN INTRODUCTION. Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano. Received September 18, 2013

Sharp Bilinear Decompositions of Products of Hardy Spaces and Their Dual Spaces

1. Introduction. SOBOLEV INEQUALITIES WITH VARIABLE EXPONENT ATTAINING THE VALUES 1 AND n. Petteri Harjulehto and Peter Hästö.

Decompositions of variable Lebesgue norms by ODE techniques

2-MICROLOCAL BESOV AND TRIEBEL-LIZORKIN SPACES OF VARIABLE INTEGRABILITY

Continuity of weakly monotone Sobolev functions of variable exponent

APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( )

THÈSE. Présentée pour l obtention du diplôme de Doctorat troisième cycle THÈME

Math. Res. Lett. 16 (2009), no. 2, c International Press 2009 LOCAL-TO-GLOBAL RESULTS IN VARIABLE EXPONENT SPACES

Research Article Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent

The variable exponent BV-Sobolev capacity

arxiv: v3 [math.ca] 9 Apr 2015

Generalized pointwise Hölder spaces

The p(x)-laplacian and applications

LORENTZ SPACE ESTIMATES FOR VECTOR FIELDS WITH DIVERGENCE AND CURL IN HARDY SPACES

The maximal operator in generalized Orlicz spaces

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

PERIODIC SOLUTIONS FOR A KIND OF LIÉNARD-TYPE p(t)-laplacian EQUATION. R. Ayazoglu (Mashiyev), I. Ekincioglu, G. Alisoy

On a compactness criteria for multidimensional Hardy type operator in p-convex Banach function spaces

ON CERTAIN COMMUTATOR ESTIMATES FOR VECTOR FIELDS

One-sided operators in grand variable exponent Lebesgue spaces

1. Introduction The α-modulation spaces M s,α

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS

arxiv: v1 [math.cv] 3 Sep 2017

arxiv: v1 [math.ap] 28 Mar 2014

Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions. Marc Lassonde Université des Antilles et de la Guyane

Sharp estimates for a class of hyperbolic pseudo-differential equations

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University

arxiv: v2 [math.ap] 30 Jan 2015

ATOMIC DECOMPOSITIONS AND OPERATORS ON HARDY SPACES

HARNACK S INEQUALITY AND THE STRONG p( )-LAPLACIAN

Hardy-Littlewood maximal operator in weighted Lorentz spaces

Harnack Inequality and Continuity of Solutions for Quasilinear Elliptic Equations in Sobolev Spaces with Variable Exponent

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa)

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM. Paweł Goncerz

Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion

On the local existence for an active scalar equation in critical regularity setting

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent

Besov regularity for operator equations on patchwise smooth manifolds

Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus.

arxiv: v1 [math.fa] 15 Aug 2018

CONDITIONALITY CONSTANTS OF QUASI-GREEDY BASES IN SUPER-REFLEXIVE BANACH SPACES

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY

EXISTENCE OF SOLUTIONS FOR A RESONANT PROBLEM UNDER LANDESMAN-LAZER CONDITIONS

Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji

VANISHING VISCOSITY IN THE PLANE FOR NONDECAYING VELOCITY AND VORTICITY

REGULARITY CRITERIA FOR WEAK SOLUTIONS TO 3D INCOMPRESSIBLE MHD EQUATIONS WITH HALL TERM

Minimization problems on the Hardy-Sobolev inequality

Micro-local analysis in Fourier Lebesgue and modulation spaces.

Erratum to Multipliers and Morrey spaces.

Paraproducts and the bilinear Calderón-Zygmund theory

ON THE REGULARITY OF WEAK SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS IN B 1

DIV-CURL TYPE THEOREMS ON LIPSCHITZ DOMAINS Zengjian Lou. 1. Introduction

Remarks on the blow-up criterion of the 3D Euler equations

CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT. We are interested in discussing the problem:

EXISTENCE AND UNIQUENESS OF p(x)-harmonic FUNCTIONS FOR BOUNDED AND UNBOUNDED p(x)

arxiv: v2 [math.ap] 6 Sep 2007

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES

A NOTE ON WAVELET EXPANSIONS FOR DYADIC BMO FUNCTIONS IN SPACES OF HOMOGENEOUS TYPE

Research Article Function Spaces with a Random Variable Exponent

SOBOLEV S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES

c 2014 Society for Industrial and Applied Mathematics

LOWER BOUNDS FOR HAAR PROJECTIONS: DETERMINISTIC EXAMPLES. 1. Introduction

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

Transcription:

Besov-type spaces with variable smoothness and integrability Douadi Drihem M sila University, Department of Mathematics, Laboratory of Functional Analysis and Geometry of Spaces December 2015 M sila, Algeria D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 1 / 47

Outline Besov-type spaces with fixed exponents Variable Lebesgue spaces Spaces of variable smoothness and integrability D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 2 / 47

Besov-type spaces with fixed exponents Besov spaces. Ψ S(R n ): Ψ(x) = 1 for x 1 and Ψ(x) = 0 for x 2. We put F ϕ 0 (x) = Ψ(x), F ϕ 1 (x) = Ψ(x) Ψ(2x) and F ϕ v (x) = F ϕ 1 (2 v x) for v = 2, 3,... Then {F ϕ v } v N0 is a resolution of unity, v =0 F ϕ v (x) = 1 for all x R n. Thus we obtain the Littlewood-Paley decomposition of all f S (R n ). f = ϕ v f v =0 D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 3 / 47

Definition s R, 0 < p, q f B s p,q = ( v =0 2 vsq ϕ v f q p) 1/q <. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 4 / 47

1. H. Triebel,Theory of function spaces. Birkhäuser, Basel, 1983. 2. H. Triebel,Theory of function spaces. II, Birkhäuser, Basel, 1992. 3. H. Triebel,Fractals and spectra, Basel, Birkhäuser, 1997. 4. H. Triebel,Theory of Function Spaces. III, Birkhäuser, Basel, 2006. 5. T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications 3, Walter de Gruyter, Berlin, 1996. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 5 / 47

Besov-type spaces BMO (R n ) spaces { BMO (R n ) = } f L 1 loc (Rn 1 ) : f BMO = sup B B B f (x) m B f dx <, where, m B f = 1 B B f (y)dy. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 6 / 47

Properties D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 7 / 47

Properties and 1 f L 1 loc belongs to BMO (Rn ) if and only if R n (1 + x ) n 1 f (x) dx < sup BJ 1 B J j J F 1 ϕ j f L 2 (B J ) 2 <, J Z. Here, ϕ S(R n ), suppϕ {ξ R n : 1 2 ξ 2}, j Z ϕ(2 j ξ) = 1, ξ = 0 and ϕ j = ϕ(2 j ). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 7 / 47

Campanato spaces Definition (Campanato spaces) Let λ 0, 1 p < +. f L p loc Lp λ (R n ) if and only if belongs to f L λ p (R n ) = 1 ( 1/p B λ/n f m B f dx) p C. B D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 8 / 47

Properties (El Baraka 2006) Let 0 λ < n + 2. f L λ 2 (Rn ) if and only if sup BJ 1 B J λ/n j J F 1 ϕ j f L 2 (B J ) 2 <, J Z. Here, ϕ S(R n ), suppϕ {ξ R n : 1 2 ξ 2}, j Z ϕ(2 j ξ) = 1, ξ = 0 and ϕ j = ϕ(2 j ). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 9 / 47

Properties (El Baraka 2006) Let 0 λ < n + 2. f L λ 2 (Rn ) if and only if sup BJ 1 B J λ/n j J F 1 ϕ j f L 2 (B J ) 2 <, J Z. Here, ϕ S(R n ), suppϕ {ξ R n : 1 2 ξ 2}, j Z ϕ(2 j ξ) = 1, ξ = 0 and ϕ j = ϕ(2 j ). A. El Baraka, An embedding theorem for Campanato spaces, Electron. J. Diff. Eqns. 66 (2002), 1-17. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 9 / 47

Properties (El Baraka 2006) Let 0 λ < n + 2. f L λ 2 (Rn ) if and only if sup BJ 1 B J λ/n j J F 1 ϕ j f L 2 (B J ) 2 <, J Z. Here, ϕ S(R n ), suppϕ {ξ R n : 1 2 ξ 2}, j Z ϕ(2 j ξ) = 1, ξ = 0 and ϕ j = ϕ(2 j ). A. El Baraka, An embedding theorem for Campanato spaces, Electron. J. Diff. Eqns. 66 (2002), 1-17. A. El Baraka, Littlewood-Paley characterization for Campanato spaces, J. Funct. Spaces. Appl. 4 (2006), no. 2, 193-220. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 9 / 47

For v Z and m Z n, let Q v,m be the dyadic cube in R n. We put Q = {Q v,m : v Z, m Z n }. Definition Let s R, τ [0, ) and 0 < p, q. The Besov-type space B s,τ p,q(r n ) is the collection of all f S (R n ) such that f B s,τ p,q = sup 1 ( ) q/p P Q P τ 2 vsq ϕ v f (x) p dx v =v + P P 1/q <, where v + P = max(0, log 2 l(p)). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 10 / 47

Properties 1. Quasi-Banach spaces. 2. Decomposition properties (atoms, molecules,...) 3. Characterizations by Differences. 4. D. Yang and W. Yuan (2013) B s,τ p,q(r n ) = B s+n(τ 1/p), (R n ), 0 < p, s R if τ > 1/p, 0 < q or if τ = 1/p and q =. W. Sickel, D. Yang, W. Yuan, Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, vol. 2005, Springer-Verlag, Berlin, 2010. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 11 / 47

Variable Lebesgue spaces Definition Soit X un espace vectoriel sur k ( k = C ou R ). La fonctionnelle ϱ : X [0, ] est dite semi-modulaire sur X si les propriétés suivantes soient vérifiées: (1) ϱ (0) = 0. (2) ϱ (λx) = ϱ (x) pour tout x X, λ k avec λ = 1. (3) ϱ est quasi-convexe. (4) ϱ est continue à gauche. (5) ϱ (λx) = 0 pour tout λ > 0 implique x = 0. Un semi-modulaire ϱ est dit modulaire si ϱ (x) = 0 = x = 0. Une semi-modulaire ϱ est dit continue si l application λ ϱ (λx) est continue sur [0, ), pour tout x X. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 12 / 47

Variable Lebesgue spaces P 0 = {p : R n [c, ) measurable, c > 0} P = {p : R n [1, ) measurable}; p = ess-inf p (x), p + = ess-sup p (x). x R n x R n The variable exponent modular is defined by ϱ p( ) (f ) = f (x) p(x ) dx. (1) R n { } L p( ) = f : ϱ p( ) (λf ) < for some λ > 0 and ( ) f f p( ) = inf{λ > 0 : ϱ p( ) 1}. (2) λ D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 13 / 47

Properties D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 14 / 47

Properties Quasi-Banach spaces. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 14 / 47

Properties Quasi-Banach spaces. If p is canstant, then L p( ) = L p (classical Lebesgue spaces). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 14 / 47

Properties Quasi-Banach spaces. If p is canstant, then L p( ) = L p (classical Lebesgue spaces). p + < then L p( ) is is separable. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 14 / 47

Properties Quasi-Banach spaces. If p is canstant, then L p( ) = L p (classical Lebesgue spaces). p + < then L p( ) is is separable. 1 < p p + < then L p( ) is reflexive. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 14 / 47

p P log we have Also for small balls B R n ( B 2 n ), and for large balls ( B 1). χ B p( ) χ B p ( ) B. (3) χ B p( ) B 1 p(x ), x B (4) χ B p( ) B 1 p (5) D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 15 / 47

Surpries D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 16 / 47

Surpries τ h maps L p( ) L p( ) for every h R n if and only if p is constant. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 16 / 47

Surpries τ h maps L p( ) L p( ) for every h R n if and only if p is constant. f g p( ) c f p( ) g 1, f L p( ), g L 1 if and only if p is constant. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 16 / 47

Surpries τ h maps L p( ) L p( ) for every h R n if and only if p is constant. f g p( ) c f p( ) g 1, f L p( ), g L 1 if and only if p is constant. Let p P log, ϕ L 1 and Ψ (x) := sup y x ϕ (y). We suppose that Ψ L 1. Then it was proved that ϕ ε f p( ) c Ψ 1 f p( ) for all f L p( ), where ϕ ε := 1 ε n ϕ ( ε ), ε > 0. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 16 / 47

Lemma Let p P log with 1 < p p + < and h R n. Then for all f L p( ) with supp Ff {ξ R n : ξ 2 v +1 }, v N 0, we have f ( + h) p( ) e (2+2vn h )c log (p) f p( ), where c > 0 is independent of h and v. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 17 / 47

1. O. Kováčik and J. Rákosník: On spaces L p(x ) and W 1,p(x ), Czechoslovak Math. J. 41(116) (1991), 592 618. 2. L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin 2011. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 18 / 47

Mixed Lebesgue-sequence space Let p, q P 0. l q( ) (L p( ) ) is defined on sequences of L p( ) -functions by the modular ( ) ϱ l q( ) (L p( ) ) ((f f v v ) v ) = inf{λ v > 0 : ϱ p( ) 1}. (6) v (f v ) v l q( ) (L p( ) ) = inf{µ > 0 : ϱ l q( ) (L p( ) ) If p, q are constants, then (f v ) v l q( ) (L p( ) ) = (f v ) v lq (L p ) = ( v =0 λ 1/q( ) v ( ) 1 µ (f v ) v f v q p) 1/q. 1}. (7) D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 19 / 47

Let p, q P 0. Then l q( ) (L p( ) ) is a semimodular. Additionally it is a modular if p + <, and it is continuous if p +, q + <. Theorem (Almeida, Hästö, 2010) Let p, q P. If either 1 p + 1 q constant, then l q( ) (L p( ) ) is a norm. 1 or q is a Theorem (Kempka, Vybíral, 2013) Let p, q P. If 1 q p, then l q( ) (L p( ) ) is a norm. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 20 / 47

log-hölder continuity condition p(x) p(y) abbreviated p C log loc. log-hölder decay condition p(x) p c log (p) log(e + 1/ x y ), x, y Rn, (8) c log log(e + x ), x Rn. (9) Abbreviated p C log, if it is locally log-hölder continuous and satisfies the log-hölder decay condition. P log = {p P : 1p } is globally log-hölder continuous. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 21 / 47

Spaces of variables smoothness and integrability Besov spaces of variables smoothness and integrability Definition (Almeida, Hästö 2010) For α : R n R and p, q P 0, the Besov space B α( ) is defined by p( ),q( ) ( ) } B {f α( ) p( ),q( ) = S (R n ) : 2 v α( ) ϕ v f <. l q( ) (L p( ) ) v D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 22 / 47

Lemma ( ) (f v ) v l q( ) (L p( ) p( ) ) = sup f v {P Q, P 1} P 1/p( ) χ P ( ) (f v ) v l τ( ),q( ) (L p( ) ) = sup f v χ P Q χ P P τ( ) v v P l q( ) (L p( ) ) v v + P l q( ) (L p( ) ) Let p P log with 1 < p p + < and q, τ P log 0 with 0 < q q + <. (i) For m > 2n + c log (1/τ), there exists c > 0 such that (η v,m f v ) v l τ( ),q( ) (L p( ) ) c (f v ) v l τ( ),q( ) (L p( ) ). (ii) For m > 2n + c log (1/p), there exists c > 0 such that (η v,m f v ) l v q( ) (L p( ) p( ) ) c (f v ) v l q( ) (L p( ) p( ) )... D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 23 / 47

Besov-type spaces of variables smoothness and integrability Ψ, ϕ S(R n ): and suppf Ψ B(0, 2) and F Ψ(ξ) c if ξ 5 3 suppf ϕ B(0, 2)\B(0, 1/2) and F ϕ(ξ) c if 3 5 ξ 5 3, c > 0. Definition α : R n R, p, q, τ P 0 and ϕ v = 2 vn ϕ(2 v ). Besov-type space B α( ),τ( ) p( ),q( ). f B α( ),τ( ) p( ),q( ) ( ) = 2 v α( ) ϕ v f <. l τ( ),q( ) (L p( ) ) v D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 24 / 47

Definition α : R n R, p, q P 0 and ϕ v = 2 vn ϕ(2 v ). Besov-type space B α( ),p( ) p( ),q( ). f B α( ),p( ) p( ),q( ) ( = sup P Q 2 v α( ) ϕ v f P 1/p( ) χ P ) v v + P l q( ) (L p( ) ) <. Independently, D. Yang, C. Zhuo and W. Yuan, studied the function spaces B α( ),τ( ) (Besov-Type Spaces with Variable Smoothness and p( ),q( ) Integrability, J. Funct. Anal. 269(6), 1840 1898, (2015)) D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 25 / 47

Boundedness of the ϕ-transform Let Φ and ϕ satisfy: suppf Φ B(0, 2) and F Φ(ξ) c if ξ 5 3 (10) and 3 suppf ϕ B(0, 2)\B(0, 1/2) and F ϕ(ξ) c if 5 ξ 5 3, c > 0. (11) Let Ψ S(R n ) satisfying (10) and ψ S(R n ) satisfying (11) such that for all ξ R n F Φ(ξ)F Ψ(ξ) + j=1 F ϕ(2 j ξ)f ψ(2 j ξ) = 1, ξ R n. (12) D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 26 / 47

The ϕ-transform S ϕ is defined by setting where Ψ m (x) = Ψ(x m) and (S ϕ ) 0,m = f, Ψ m (S ϕ ) v,m = f, ϕ v,m where ϕ v,m (x) = 2 vn/2 ϕ(2 v x m) and v N. The inverse ϕ-transform T ψ is defined by T ψ λ = λ 0,m Ψ m + m Z n v =1 where λ = {λ v,m C : v N 0, m Z n }. m Z n λ v,m ψ v,m, D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 27 / 47

Q v,m is the dyadic cube in R n. χ v,m is the characteristic function of Q v,m. Definition Let p, q, τ P 0 and let α : R n R. Then for all complex valued sequences λ = {λ v,m C : v } N 0, m Z n } we define b {λ α( ),p( ) p( ),q( ) = : λ b α( ),p( ) < where p( ),q( ) 2 v (α( )+n/2) λ v,m χ v,m λ b α( ),p( ) = sup m Z n p( ),q( ) P Q P 1/p( ) χ P } and b {λ α( ),τ( ) p( ),q( ) = : λ α( ),τ( ) b < where p( ),q( ) 2 v (α( )+n/2) λ v,m χ v,m λ α( ),τ( ) b = sup m Z n p( ),q( ) P Q χ P τ( ) χ P v v + P l q( ) (L p( ) ) v v + P l q( ) (L p( ) ) D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 28 / 47.

We use a α( ),τ( ) to denote either bα( ),τ( ) p( ),q( ) p( ),q( ) or b α( ),p( ) p( ),q( ). Lemma Let α C log loc log and p, q, τ P0 and Ψ, ψ S(R n ) satisfy, respectively, (10) and (11). Then for all λ a α( ),τ( ) p( ),q( ) converges in S (R n ). T ψ λ = λ 0,m Ψ m + m Z n v =1 m Z n λ v,m ψ v,m, D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 29 / 47

We use A α( ),τ( ) α( ),τ( ) to denote either B p( ),q( ) p( ),q( ) or B α( ),p( ) p( ),q( ). Theorem Let α C log log loc and p, q, τ P0, 0 < q + <. Suppose that Φ, Ψ S(R n ) satisfying (10)and ϕ, ψ S(R n ) satisfy (11) such that (12) holds. The operators and S ϕ : A α( ),τ( ) p( ),q( ) aα( ),τ( ) p( ),q( ) T ψ : a α( ),τ( ) p( ),q( ) Aα( ),τ( ) p( ),q( ) are bounded. Furthermore, T ψ S ϕ is the identity on A α( ),τ( ) p( ),q( ). Corollary The definition of the spaces A α( ),τ( ) p( ),q( ) and ϕ. is independent of the choices of Φ D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 30 / 47

Lemma Let α C log log loc and p, q, τ P0 with τ (0, p ] and 0 < q + <. (i) f S (R n ) belongs to B α( ),τ( ) if and only if, p( ),q( ) f # B α( ),τ( ) p( ),q( ) = sup {P Q, P 1} ( 2 v α( ) ϕ v f χ P τ( ) (ii)f S (R n )belongs to B α( ),p( ) p( ),q( ) ( f α( ),p( ) = 2 # B v α( ) ϕ v f p( ),q( ) χ P if and only if, ) v ) v v P l q( ) (L p( ) ) <. l q( ) (L p( ) p( ) ) <, D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 31 / 47

Theorem Let α C log loc and p, q, τ P log 0 with τ (0, p ] and 0 < q + <. If (1/τ 1/p) > 0 or then and (1/τ 1/p) 0 and q, B α( ),τ( ) p( ),q( ) = B, α( )+n(1/τ( ) 1/p( )) B α( ),p( ) p( ), = B α( ), D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 32 / 47

Theorem Let α C log loc or then and p, q, τ P log 0 with 0 < q + <. If f B α( ),τ( ) p( ),q( ) (1/τ 1/p) + < 0 (1/τ 1/p) + 0 and q, ( = sup P Q 2 v α( ) ϕ v f χ P τ( ) is an equivalent quasi-norm in B α( ),τ( ) p( ),q( ). χ P ) v 0 l q( ) (L p( ) ), D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 33 / 47

Embeddings Theorem Let α C log loc and p, q 0, q 1, τ P log 0. (i) If q 0 q 1, then A α( ),τ( ) p( ),q 0 Aα( ),τ( ) ( ) p( ),q 1 ( ). (ii) If (α 0 α 1 ) > 0, then Theorem A α 0( ),τ( ) p( ),q 0 ( ) Aα 1( ),τ( ) p( ),q 1 ( ). Let α 0, α 1 C log loc and p 0, p 1, q, τ P log 0 with 0 < q + <. If α 0 > α 1 n ( ) and α 0 (x) p 0 (x ) = α 1(x) p 1 (x ) with p0 p 1 < 1, then n A α 0( ),τ( ) p 0 ( ),q( ) Aα 1( ),τ( ) p 1 ( ),q( ). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 34 / 47

Theorem Let α C log log loc and p, q, τ P0 with 0 < q q + <. If (p 2 p 1 ) + 0, then B α( )+ n p 2 ( ),q( ) τ( ) + n p 2 ( ) n p 1 ( ) B α( ),τ( ) p 1 ( ),q( ). Theorem Let α C log loc and p, q, τ P log 0 with 0 < q q + <. Then B α( ),τ( ) p( ),q( ) B α( )+ n τ( ) n p( ),. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 35 / 47

Theorem Let α C log loc and p, q, τ P log 0 with 0 < q + <. Then S(R n ) A α( ),τ( ) p( ),q( ) S (R n ). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 36 / 47

Let 0 < u p. The Morrey space M p u is defined to be the set of all u-locally Lebesgue-integrable functions f on R n such that f M p u ( 1/u = sup B p 1 u 1 f (x) dx) u <, B B where the supremum is taken over all balls B in R n. Definition Let {F ϕ v } v N0 be a resolution of unity, α : R n R, 0 < u p and 0 < q. The Besov-Morrey space Np,q,u α( ) is the collection of all f S (R n ) such that f N α( ) p,q,u = ( v =0 2 v α( ) ϕ v f ) 1/q q <. M p u D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 37 / 47

J. Fu, J. Xu, Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents, J. Math. Anal. Appl., 381 (2011), 280-298. Proposition Let α C log loc, 0 < q < and 0 < u < p <. (i) For 0 < q < we have the continuous embeddings N α( ) p,q,u B α( ),( 1 u 1 p ) 1 p,q. (ii) We have N α( ) p,,u = B α( ),( 1 u 1 p ) 1 p,. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 38 / 47

Definition Let 0 < p p + < and 0 < q q + <. The Triebel-Lizorkin space F α( ) p( ),q( ) is the collection of all f S (R n ) such that f α( ) F := p( ),q( ) ( ) 2 α( ) ϕ v f v 0 <. (13) L p( ) (l q( ) ) M. Izuki and T. Noi (2012-2014) have obtained the duality of F α( ) p( ),q( ), for 1 < p p + < and 1 < q q + <. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 39 / 47

Theorem Let α C log loc and q P log with 1 < q q + <. Then ( ) F α( ) 1,q( ) = B α( ),q ( ) q ( ),q ( ). In particular, if g B α( ),q ( ) q ( ),q ( ), then the map, given by l g (f ) = f, g, defined initially for f S(R n ) extends to a continuous linear functional on F α( ) 1,q( ) with g B α( ),q ( ) l g ( q ( ),q F α( ) ) and every l ( ) 1,q( ) l = l g for some g B α( ),q ( ) q ( ),q ( ). ( F α( ) 1,q( )) satisfies D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 40 / 47

Atomic decomposition Definition Let K N 0, L + 1 N 0 and let γ > 1. A function a C K (R n ) is called [K, L]-atom centered at Q v,m, v N 0 and m Z n, if supp a γq v,m (14) D β a(x) 2 v ( β +1/2), for 0 β K, x R n (15) and if R n x β a(x)dx = 0, for 0 β L and v 1. (16) D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 41 / 47

Theorem Let α C log log loc and p, q, τ P0 with 0 < q q + <. Let 0 < p p + and let K, L + 1 N 0 such that respectively K ([α + + n/p ] + 1) + and K ([α + + n/τ ] + 1) +, (17) 1 L max( 1, [n( min(1, p ) 1) α ]). (18) Then f S (R n ) belongs to B α( ),τ( ) p( ),q( ), respectively to B α( ),p( ), if and p( ),q( ) only if it can be represented as f = v =0 where ϱ v,m are [K, L]-atoms and m Z n λ v,m ϱ v,m, converging in S (R n ), (19) D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 42 / 47

λ = {λ v,m C : v N 0, m Z n } b α( ),τ( ) p( ),q( ), respectively λ b α( ),p( ) p( ),q( )., where the infimum, respectively inf λ b α( ),τ( ) p( ),q( ) Furthermore, inf λ α( ),τ( ) b p( ),q( ) is taken over admissible representations (19), is an equivalent quasi-norm in B α( ),τ( ) p( ),q( ), respectively B α( ),p( ) p( ),q( ). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 43 / 47

Characterization by ball means of differences Let f be an arbitrary function on R n and x, h R n. and h f (x) = f (x + h) f (x), M h +1 f (x) = h ( M h f )(x), M N. M h f (x) = M j=0 ( 1) j Cj M f (x + (M j)h). We put (ball means of differences) f (x) = t n M h f (x) dh d M t h t t > 0, M N Let L p( ) be the collection of functions f Lp( ) τ( ) loc (Rn ) such that f p( ) L = sup τ( ) {P Q, P 1} f χ P <, p, τ P 0, χ P τ( ) p( ) D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 44 / 47

We define f B α( ),τ( ) p( ),q( ) = f p( ) L + sup τ( ) P Q ( 2 k α( ) χ P τ( ) d M 2 k f χ P ) k v + P l q( ) (L p( ) ). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 45 / 47

We set δ p,τ = n min ( 0, ( 1 p 1 ) ). τ Theorem Let α C log log loc, M N, τ, q P0 and p P log, with p > 1. Assume Then B α( ),τ( ) p( ),q( ) 0 < α α + < M + δ p,τ. is equivalent quasi-norm on B α( ),τ( ) p( ),q( ). D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 46 / 47

1 A. Almeida and P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal. 258 (2010), 1628 1655. 2 L. Diening, P. Hästö and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009),no. 6, 1731 1768. 3 L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin 2011. 4 D. Drihem, Atomic decomposition of Besov spaces with variable smoothness and integrability, J. Math. Anal. Appl. 389 (2012), no. 1, 15 31. 5 D. Drihem, Some properties of variable Besov-type spaces, Funct. Approx. Comment. Math. 52 (2015), no. 2, 193 221. 6 D. Drihem, Some characterizations of variable Besov-type spaces, Ann. Funct. Anal. 6 (2015), no.4, 255 288. 7 D. Drihem, On the duality of variable Triebel-Lizorkin spaces, arxiv:1506.01642. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 46 / 47

8 M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34 170. 9 H. Kempka and J. Vybíral, A note on the spaces of variable integrability and summability of Almeida and Hästö, Proc. Amer. Math. Soc. 141 (2013), no. 9, 3207 3212. 10 H. Kempka and J. Vybíral, Spaces of variable smoothness and integrability: Characterizations by local means and ball means of differences, J. Fourier Anal. Appl. 18, (2012), no. 4, 852 891. 11 T. Noi, Duality of variable exponent Triebel-Lizorkin and Besov spaces, J. Funct. Spaces Appl. 2012, Art. ID 361807, 19 pp. 12 M. Izuki and T. Noi, Duality of Besov, Triebel-Lizorkin and Herz spaces with variable exponents, Rend. Circ. Mat. Palermo. 63 (2014), 221 245. D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 47 / 47

Thank you for your attention D. Drihem ( M sila University, Algeria) Variable Besov-type spaces 11/15 47 / 47