A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods

Similar documents
Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions

A Short Note on D=3 N=1 Supergravity

Supersymmetric field theories

Tools for supersymmetry

Supercurrents. Nathan Seiberg IAS

Exact solutions in supergravity

The N = 2 Gauss-Bonnet invariant in and out of superspace

arxiv: v2 [hep-th] 26 Aug 2014

A Landscape of Field Theories

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

N=1 Global Supersymmetry in D=4

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

Quantum Fields in Curved Spacetime

N = 2 supergravity in d = 4, 5, 6 and its matter couplings

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Lecture 9: RR-sector and D-branes

Techniques for exact calculations in 4D SUSY gauge theories

Symmetries, Groups Theory and Lie Algebras in Physics

Non-SUSY BSM: Lecture 1/2

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

New Model of massive spin-2 particle

Small Black Strings/Holes

String theory triplets and higher-spin curvatures

References. S. Cacciatori and D. Klemm, :

8.821 String Theory Fall 2008

A Supergravity Dual for 4d SCFT s Universal Sector

Maximally Supersymmetric Solutions in Supergravity

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

An extended standard model and its Higgs geometry from the matrix model

1/2-maximal consistent truncations of EFT and the K3 / Heterotic duality

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela

1 Canonical quantization conformal gauge

THE 4D/5D CONNECTION BLACK HOLES and HIGHER-DERIVATIVE COUPLINGS

Introduction to AdS/CFT

Supergravity gaugings and some string and field theory phenomena

Notes on General Relativity Linearized Gravity and Gravitational waves

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

5D SYM on 3D deformed spheres

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Current Algebra Constraints on Supersymmetric Quantum Field Theories

Some applications of light-cone superspace

Half BPS solutions in type IIB and M-theory

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

Inflation from supersymmetry breaking

Preprint typeset in JHEP style - HYPER VERSION. Special Geometry. Yang Zhang. Abstract: N = 2 Supergravity. based on hep-th/ , Boris PiolineA

University of Groningen. The many faces of OSp(1 32) Bergshoeff, Eric; Proeyen, Antoine Van. Published in: Classical and Quantum Gravity

HIGHER SPIN PROBLEM IN FIELD THEORY

Metric-affine theories of gravity

Superstring and Gauge Theory Correspondence

String Theory Compactifications with Background Fluxes

Yet Another Alternative to Compactification

Higher-Spin Fermionic Gauge Fields & Their Electromagnetic Coupling

Lecture 7 SUSY breaking

(1,0) Superconformal Models in 6D and Non-abelian Tensor Multiplets

Supergravity. Cambridge University Press Supergravity Daniel Z. Freedman and Antoine Van Proeyen Frontmatter More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

GRANGIAN QUANTIZATION OF THE HETEROTIC STRING IN THE BOSONIC FORMULAT

Lecturer: Bengt E W Nilsson

A SUPERSPACE ODYSSEY. Bernard de Wit. Adventures in Superspace McGill University, Montreal April 19-20, Nikhef Amsterdam. Utrecht University

Heterotic Torsional Backgrounds, from Supergravity to CFT

Introduction to Supergravity

Exercise 1 Classical Bosonic String

EXTENDED GAUGED SUPERGRAVITIES AND FLUXES

Holographic Anyons in the ABJM theory

ASPECTS OF 7D AND 6D GAUGED SUPERGRAVITIES. A Dissertation DER-CHYN JONG

The Geometry of two dimensional Supersymmetric Nonlinear σ Model

The Kac Moody Approach to Supergravity

D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, P SU(2, 2 4) Integrable Spin Chain INTEGRABILITY IN YANG-MILLS THEORY

A Comment on String Solitons

Off-shell conformal supergravity in 3D

Manifestly diffeomorphism invariant classical Exact Renormalization Group

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi

Contents. Preface to the second edition. Preface to the first edition. Part I Introduction to gravity and supergravity 1

arxiv: v2 [hep-th] 18 Sep 2017

SUPERGRAVITY BERNARD DE WIT COURSE 1. PHOTO: height 7.5cm, width 11cm

Spinor Representation of Conformal Group and Gravitational Model

Kähler representations for twisted supergravity. Laurent Baulieu LPTHE. Université Pierre et Marie Curie, Paris, France. Puri, January 6th, 2011

String Theory II GEORGE SIOPSIS AND STUDENTS

Quantum gravity at one-loop and AdS/CFT

A New Regulariation of N = 4 Super Yang-Mills Theory

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

Graded Lie Algebra of Quaternions and Superalgebra of SO(3, 1)

Extremal Black Holes in N = 2 Supergravity

On the curious spectrum of duality-invariant higher-derivative gravitational field theories

Diffeomorphism Invariant Gauge Theories

BPS rotating black holes in N = 1 D = 4 anti-de Sitter supergravity

arxiv:hep-th/ v1 6 Oct 1998

Yet Another Alternative to Compactification by Heterotic Five-branes

String theory effects on 5D black strings

A brief introduction to modified theories of gravity

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

arxiv: v1 [hep-th] 13 Feb 2008

A Brief Introduction to AdS/CFT Correspondence

Anomalies, Conformal Manifolds, and Spheres

Running at Non-relativistic Speed

BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity

Transcription:

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods Frederik Coomans KU Leuven Workshop on Conformal Field Theories Beyond Two Dimensions 16/03/2012, Texas A&M Based on work with E. Bergshoeff, E. Sezgin and A. Van Proeyen Frederik Coomans (KU Leuven) 16/03/2012 1 / 36

Introduction Possible SUGRA theories for a given spacetime dimension and number of supersymmetry generators [Van Proeyen, Freedman, 2012] Frederik Coomans (KU Leuven) 16/03/2012 2 / 36

Introduction Method For D = 4, 5, 6 and #Q 16 (i.e when there are matter multiplets) matter-coupled SUGRA actions can be constructed via superconformal tensor calculus (SCTC) What? Use superconformal symmetry as a tool to construct SUGRA theories (which are only invariant under super Poincaré). Construct superconformal theory by coupling a compensating matter multiplet to the Weyl multiplet (gauge multiplet of the superconformal group). Compensator multiplet compensates for the redundant conformal symmetries. Frederik Coomans (KU Leuven) 16/03/2012 3 / 36

Introduction Method For D = 4, 5, 6 and #Q 16 (i.e when there are matter multiplets) matter-coupled SUGRA actions can be constructed via superconformal tensor calculus (SCTC) Why? (advantages over other methods like Noether method, superspace,...) Conformal symmetry severely restricts # couplings that can be written Extra symmetry gives inside in the structure of the theory Different compensators give rise to different formulations of the Poincaré theory Easy to construct off-shell actions Frederik Coomans (KU Leuven) 16/03/2012 4 / 36

Introduction Use of SCTC for minimal D = 6 SUGRA: [Bergshoeff, Sezgin, Van Proeyen, 1986]: Weyl & matter multiplets, action formulas [Van Proeyen, FC, 2011]: Complete off-shell pure SUGRA action [Bergshoeff, Rakowski, 1987 & Bergshoeff, Sezgin, Salam, 1987]: Off-shell supersymmetric Riem 2 action In this talk: [Bergshoeff, Sezgin, Van Proeyen, FC, 2012]: Gauge U(1) R-symmetry of pure theory Add Riem 2 action and study gauging procedure in presence of higher derivative terms Study solutions of gauged higher derivative action Frederik Coomans (KU Leuven) 16/03/2012 5 / 36

Introduction Why interest in higher-derivative terms? Appear as α corrections in effective action of string theory Corrections to black hole entropy (much progress in D = 4, 5 not yet in D = 6) Compactification to D = 3: make graviton a (massive) propagating mode (e.g. [Bergshoeff et al, 2010]) Frederik Coomans (KU Leuven) 16/03/2012 6 / 36

Outline 1 SUSY in D = 6 2 Construction of actions via superconformal tensor calculus -Construction of the pure action -Coupling to a vector multiplet and gauging of the R-symmetry -Connection to Salam-Sezgin -Construction of R 2 -action -The total Lagrangian 3 Vacuum solutions of the gauged R + R 2 Lagrangian 4 Conclusions and outlook Frederik Coomans (KU Leuven) 16/03/2012 7 / 36

1. SUSY in D = 6 Frederik Coomans (KU Leuven) 16/03/2012 8 / 36

Spinors in minimal D = 6 SUGRA Irreducible spinor has 8 real components Is Weyl spinor: λ = P L λ or λ = P R λ Symplectic Majorana condition: λ i = ɛ ij (λ j ) C Minimal SUSY algebra has 8 supercharges (like N = 2 in D = 4) Pair of SUSY generators Q i α = {Q 1 α, Q 2 α} of the same chirality, hence N = (1, 0) R-symmetry group is SU(2) Transformations between the SUSY parameters ɛ i = {ɛ 1, ɛ 2 } preserving the symplectic structure are SU(2) transformations Frederik Coomans (KU Leuven) 16/03/2012 9 / 36

p-form gauge fields in minimal D = 6 SUGRA S p = 1 2 F (p+1) F (p+1), F (p+1) = da (p) Reducible gauge symmetry δa (p) = dθ (p 1) Watch out when counting degrees of freedom! Degrees of freedom Off-shell: as antisymmetric tensor in SO(5) On-shell: as antisymmetric tensor in SO(4) p-forms are dual to (D p 2) = (4 p)-forms, hence 2-forms are selfdual Frederik Coomans (KU Leuven) 16/03/2012 10 / 36

Off-shell vs on-shell multiplets SUSY theories are built up from SUSY multiplets (i.e. field representations of the SUSY algebra) off-shell multiplets: SUSY-algebra closes on the fields of the multiplet; # off-shell bosonic d.o.f. = # off-shell fermionic d.o.f. on-shell multiplets: SUSY-algebra only closes on the fields of the multiplet modulo EOM; # on-shell bosonic d.o.f. = # on-shell fermionic d.o.f. Sum of two off-shell actions is again off-shell supersymmetric; no modification of the SUSY rules necessary! Frederik Coomans (KU Leuven) 16/03/2012 11 / 36

2. Construction of actions via superconformal tensor calculus Frederik Coomans (KU Leuven) 16/03/2012 12 / 36

Gravity as a conformal gauge theory P a M ab D K a ξ a λ ab λ D λ a K e a µ ω ab µ b µ f a µ Constraints determine two gauge fields R µν (P a ) = 0 = ω µ ab = ω µ ab (e, b) e ν br µν (M ab ) = 0 = f µ a = f µ a (e, b) Weyl multiplet : e µ a, b µ Frederik Coomans (KU Leuven) 16/03/2012 13 / 36

Gravity as a conformal gauge theory Use scalar field φ as compensator Conformal gravity: L C = gφ C φ = gφ φ 1 6 grφ 2 +... Gauge fixing, δ(λ K )b µ = e µa λ a K = special conformal gauge fixing: b µ = 0, δ(λ D )φ = λ D φ = dilatational gauge fixing: φ = 3M P, leads to EH action: L = M2 P gr 2 Frederik Coomans (KU Leuven) 16/03/2012 14 / 36

Gravity as a conformal gauge theory Frederik Coomans (KU Leuven) 16/03/2012 15 / 36

Minimal D = 6 SUGRA P a M ab D K a SU(2) Q i S i ξ a λ ab λ D λ a K Λ ij ɛ i η i e µ a ω µ ab b µ f µ a V ij µ ψ µ i φ µ i Constraints determine ω µ ab, f µ a and φ µ i in terms of the others Weyl multiplet: e µ a, b µ, V ij µ, σ, B µν, ψ µ i, ψ i PS: there is also another choice of extra fields, i.e. another Weyl multiplet, but this one is chosen to obtain an invariant action Frederik Coomans (KU Leuven) 16/03/2012 16 / 36

Minimal D = 6 SUGRA Compensating multiplet: linear multiplet (off-shell, SC action known) Field Off-shell dof On-shell dof L ij 3 3 E µνρσ 5 1 ϕ i 8 4 We know: superconformal action for coupling of vector and linear multiplet plus embedding of linear into vector multiplet = We know: superconformal action for linear multiplet Gauge fixing: L ij = 1 2 δ ij, ϕ i = 0, b µ = 0 fixes D, SU(2)/U(1), K, S Frederik Coomans (KU Leuven) 16/03/2012 17 / 36

Minimal D = 6 SUGRA Weyl Linear Gauge fixing off-shell Poincaré e µ a (15) P a, M ab e µ a (15) P a, M ab 9 b µ (0) K a b µ = 0 K a V µ i j (15) SU(2) V µ i j (17) SO(2) σ (1) σ (1) 1 B µν (10) Λ µ B µν (10) Λ µ 6 dilatations ( 1) L ij (3) L ij = 1 δ ij 2 D, SU(2)/SO(2) E µνρσ (5) Λµνρ E µνρσ (5) Λµνρ 48 48 16 ψ i µ (40) Q i ψ i µ (40) Q i 12 ψ i (8) ψ i (8) 4 S-susy ( 8) ϕ i (8) ϕ i = 0 S i 48 48 16 Frederik Coomans (KU Leuven) 16/03/2012 18 / 36

Minimal D = 6 SUGRA e 1 L L=1 R = 1 2 R 1 2 σ 2 µσ µ σ 1 24 σ 2 F µνρ(b)f µνρ (B) + V µij V µij 1 4 E µ E µ + 1 E µ V µ 1 2 2 ψ µγ µνρ D νψ ρ 2σ 2 ψγ µ D µψ +... [Van Proeyen, FC, 2011] PS: we split the gauge field V ij µ = V ij µ + 1 2 δij V µ into traceless plus trace and denote E µ as the dual of the 4-form field strength Frederik Coomans (KU Leuven) 16/03/2012 19 / 36

Gauging the theory To obtain R-symmetry gauging we add a vector multiplet: Field Off-shell dof On-shell dof W µ 5 4 Y ij 3 0 Ω i 8 4 -superconformal invariant action (includes also fields of the Weyl multiplet) e 1 L V = σ ( 1 ) 4 Fµν(W )F µν (W ) 2 Ωγ µ D µ(ω)ω + Y ij Y ij -coupling with linear multiplet 1 16 e 1 ε µνρσλτ B µνf ρσ(w )F λτ (W ) +... e 1 L VL = Y ij L ij + 2 Ωϕ L ij ψµi γ µ Ω j + 1 2 Wµ ( E µ ψ νγ νµ ϕ ) [Bergshoeff, Sezgin, Van Proeyen, 1986] Frederik Coomans (KU Leuven) 16/03/2012 20 / 36

Gauging the theory L 1 = (L R + L V + gl VL ) L=1 Contains terms σy ij Y ij + g 2 δ ij Y ij V = 1 4 g 2 σ 1 (after solving for Y ij ) Has U(1) R U(1) gauge symmetry E µνρσ field equation E µ = µ φ + 2V µ + gw µ V µ field equation E µ + (fermion bilinears) = 0 δ gauge φ = 2λ gη, hence fixing the scalar φ = φ 0 implies U(1)R U(1) U(1) diag R 2Vµ + gw µ = 0 (bosonically) Frederik Coomans (KU Leuven) 16/03/2012 21 / 36

To the Salam-Sezgin model... U(1) gauged Einstein-Maxwell SUGRA in D = 6, spontaneously compactifies on Mink 4 S 2 breaking half of the supersymmetries [Salam, Sezgin, 1984] e 1 L SS = 1 2 R 1 2 σ 2 aσ a σ 1 4 g 2 σ 1 1 24 σ2 G µνρg µνρ 1 4 σfµν(w )F µν (W ) +... on-shell model U(1) vector appears inside the 2-form field strength: G (3) = d B (2) + dw (1) W (1) How does our model, described by L 1, relate to the SS model? Frederik Coomans (KU Leuven) 16/03/2012 22 / 36

To the Salam-Sezgin model... After elimination of auxiliary fields our model becomes e 1 L on-shell = 1 2 R 1 2 σ 2 µσ µ σ 1 4 g 2 σ 1 1 24 σ 2 F µνρ(b)f µνρ (B) 1 4 σfµν(w )F µν (W ) + 1 24 e 1 ε µνρσλτ F µνρ(b)f λτ (W )W σ +... To obtain the SS-model we have to dualize the 2-form B µν. We can do this by adding a Lagrange multiplier 1 24 εµνρσλτ F µνρ (B) σ Bλτ solving for F µνρ (B) Frederik Coomans (KU Leuven) 16/03/2012 23 / 36

An alternative off-shell formulation Other gauge fixing, σ = 1, L ij = 1 2 δ ij L, ψ i = 0, b µ = 0 amounts to L 2 = (L R + L V + gl VL ) σ=1 Essentially: σ and ψ i replaced by L and ϕ i Frederik Coomans (KU Leuven) 16/03/2012 24 / 36

The Riem 2 invariant Trick from [Bergshoeff, Rakowski, 1987 & Bergshoeff, Sezgin, Salam, 1987]: Embed Weyl multiplet in non-abelian vector multiplet Denote ω µ ab = ω µ ab 1 2 F µ ab (B) (bosonic torsion) In the gauge σ = 1 : ( ) ) 2 ω ab µ, R abi (Q), 2 F abij (V) (W I µ, Ω I i, Y I ij Lagrangian for the non-abelian vector multiplet is known [Bergshoeff, Sezgin, Van Proeyen, 1986]: e 1 L YM σ=1 = 1 4 Fµν I (W )F µνi (W ) 2 Ω I γ µ D µ(ω)ω I + Y Iij Y I ij 1 16 e 1 ε µνρσλτ B µνf I ρσ(w )F I λτ (W ) + 1 2 FνρI Ω I γ µ γ νρ ψ µ + 1 12 Fµνρ(B) Ω I γ µνρ Ω I Frederik Coomans (KU Leuven) 16/03/2012 25 / 36

The Riem 2 invariant Making the substitution amounts to e 1 L R 2 σ=1 = R ab µν (ω )R µν ab(ω ) 2F ab (V)F ab (V) 4F abij (V)F abij (V) + 1 4 e 1 ε µνρσλτ B µνr ρσ ab (ω )R λτ ab (ω ) +2 R +ab (Q)γ µ D µ(ω, ω )R+ ab (Q) Rνρab (ω ) R +ab (Q)γ µ γ νρ ψ µ ( 8F µν ij (V) ψ µ i γ λ R+j λν (Q) + 1 ) 6 ψ µ i γ F (B)ψj ν 1 ab R + 12 (Q)γ F (B)R +ab(q) 1 [ D µ(ω, Γ +)R µρab (ω ) 2 2F µν ρ (B)R µνab (ω )] ψ aγ ρψ b Frederik Coomans (KU Leuven) 16/03/2012 26 / 36

The total Lagrangian L tot = (L R + L V + gl VL 1 8M 2 L R 2) σ=1 Off-shell: every term is seperately invariant! (no 1/M 2 corrections to the transformation rules) e 1 L tot = 1 2 LR + 1 2 glδ ij Y ij + Y ij Y ij + 1 2 L 1 µl µ L 1 24 LFµνρ(B)F µνρ (B) +LV a kl V a kl 1 4 L 1 E µe µ + 1 2 E µ( V µ + 1 2 gw µ ) 1 4 Fµν(W )F µν (W ) 1 16 e 1 ε µνρσλτ B µνf ρσ(w )F λτ (W ) 1 [ 8M 2 R ab µν (ω )R µν ab(ω ) 2F ab (V)F ab (V) 4F abij (V )F abij (V ) + 1 ] 4 e 1 ε µνρσλτ B µνr ab ρσ (ω )R λτ ab (ω ) +... Frederik Coomans (KU Leuven) 16/03/2012 27 / 36

3. Vacuum solutions Frederik Coomans (KU Leuven) 16/03/2012 28 / 36

Perturbative or Toy Model L R 2 contains kinetic terms for some auxiliaries! Can we still eliminate them? 1 Consider 1/M 2 as a small parameter and eliminate auxiliaries perturbatively SUSY only order by order in parameter 1/M 2 Open question: does this on-shell Lagrangian correspond to the one obtained by compactifying the effective heterotic string Lagrangian? 2 Consider 1/M 2 as an arbitrary (not necessarily small) parameter Propagating auxiliaries give rise to ghosts Consider theory as a toy model with exact SUSY We will take this approach when studying solutions of the theory Frederik Coomans (KU Leuven) 16/03/2012 29 / 36

Vacuum solutions Only consider bosonic field equations (background fermions vanish) Lagrangian without higher derivative terms Mink4 S 2, preserving half of the supersymmetries (Salam-Sezgin) No Mink 6 or (A)dS solution Lagrangian with higher derivative terms Elimination of Y ij, E µνρσ still possible Elimination of V ij µ, V µ no longer possible since they acquired kinetic terms Solutions without fluxes Solutions with 2-form flux or 3-form flux Frederik Coomans (KU Leuven) 16/03/2012 30 / 36

Vacuum solutions without fluxes Only non-vanishing fields are metric and L = L 0 Mink 6 only a solution if we switch off gauging g = 0, since R = g 2 L 0 For g 0 only solutions of the form M D M 6 D, i.e. consider Ansatz R µνρσ = n 1 g 2 L 0 (g µρ g νσ g µσ g νρ ), R pqrs = n 2 g 2 L 0 (g pr g qs g ps g qr ), L = L 0, M 2 = n 3 g 2 All these solutions are non-susy Spacetime n 1 n 2 n 3 Mink 4 S 2 0 1/2 1/2 ds 4 T 2 1/12 0 1/12 ds 4 S 2 1/14 1/14 1/14 Mink 3 S 3 0 1/6 1/6 ds 3 T 3 1/6 0 1/6 ds 3 S 3 1/12 1/12 1/12 Frederik Coomans (KU Leuven) 16/03/2012 31 / 36

Vacuum solutions with 2-form flux Consider solutions of the form M 4 M 2 Metric and L = L 0 non-vanishing and V µ, W µ have fluxes on M 2 Consider Ansatz R µν = 3a g µν, R rs = b g rs, L = L 0, F rs (W ) = c g 2 ε rs, F rs (V) = g 2 c g 2 ε rs, Mink 4 S 2 is still a solution, preserving half of the supersymmetries! Other solutions include AdS4 S 2, ds 4 S 2, ds 4 H 2 (all non-susy) Frederik Coomans (KU Leuven) 16/03/2012 32 / 36

Vacuum solutions with 3-form flux Consider solutions of the form M 3 M 3 Metric and L = L 0 non-vanishing and B µν has fluxes on both M 3 s Consider Ansatz R µν ρσ = 2a δ ρ [µ δσ ν], R pq rs = 2b δ r [p δs q], L = L 0, F µνρ (B) = 2c g 1 ε µνρ, F rst (B) = 2c g 2 ε rst c 2 = a = b: AdS 3 S 3, preserving full susy Other solutions include AdS3 S 3, ds 3 S 3, ds 3 H 3 (all non-susy) Frederik Coomans (KU Leuven) 16/03/2012 33 / 36

4. Conclusions and outlook Frederik Coomans (KU Leuven) 16/03/2012 34 / 36

Conclusions Use of superconformal calculus to construct minimal D = 6 R-symmetry gauged supergravity with higher derivative (Riem 2 +...) terms All parts of the action seperately off-shell Auxiliaries can be eliminated perturbatively; correspondence with compactified string Lagrangian? Potential is not modified by Riem 2 -terms (no couplings with Y ij in L R 2) Supersymmetric Mink 4 S 2 solution is still valid Also other solutions found Frederik Coomans (KU Leuven) 16/03/2012 35 / 36

Outlook D = 6 is highest dimension that allows off-shell formulation: worthwile to investigate further Adding matter couplings (Yang-Mills multiplets, hypermultiplets) Anomalies (Lorentz CS term is part of the Riem 2 -invariant) Computation of the spectrum in Mink 4 S 2 Existence of other higher curvature invariants in D = 6? Higher derivative terms contribute corrections to the BH entropy; are important for connection microscopic/macroscopic entropy In D = 4, N = 2 [Lopes, Cardoso, de Wit, Mohaupt, 2004] In D = 5, N = 2 [de Wit, Katmadas, 2011] Need to find BH solutions! so far only BH solutions for ungauged theory without higher derivative terms [Gibbons, Maeda, 1988] Frederik Coomans (KU Leuven) 16/03/2012 36 / 36