INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 14

Similar documents
CHEVALLEY S THEOREM AND COMPLETE VARIETIES

Math 418 Algebraic Geometry Notes

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

Here is another way to understand what a scheme is 1.GivenaschemeX, and a commutative ring R, the set of R-valued points

NONSINGULAR CURVES BRIAN OSSERMAN

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48

ABSTRACT NONSINGULAR CURVES

INTERSECTION THEORY CLASS 2

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 41

Exploring the Exotic Setting for Algebraic Geometry

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

11. Dimension. 96 Andreas Gathmann

AN INTRODUCTION TO AFFINE SCHEMES

(dim Z j dim Z j 1 ) 1 j i

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

10. Smooth Varieties. 82 Andreas Gathmann

Algebraic Geometry Spring 2009

HARTSHORNE EXERCISES

INTERSECTION THEORY CLASS 7

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

DIVISORS ON NONSINGULAR CURVES

A course in. Algebraic Geometry. Taught by Prof. Xinwen Zhu. Fall 2011

AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

COMPLEX ALGEBRAIC SURFACES CLASS 9

Resolution of Singularities in Algebraic Varieties

MA 206 notes: introduction to resolution of singularities

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 51 AND 52

INTERSECTION THEORY CLASS 6

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

Exercise Sheet 7 - Solutions

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

Algebraic varieties and schemes over any scheme. Non singular varieties

Algebraic Varieties. Chapter Algebraic Varieties

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 18

MATH 233B, FLATNESS AND SMOOTHNESS.

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 26

3. The Sheaf of Regular Functions

Math 145. Codimension

Algebraic Geometry. Andreas Gathmann. Class Notes TU Kaiserslautern 2014

Algebraic Geometry I Lectures 14 and 15

Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed.

Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo. Alex Massarenti

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

Algebraic Varieties. Brian Osserman

2. Prime and Maximal Ideals

DEFORMATIONS VIA DIMENSION THEORY

Preliminary Exam Topics Sarah Mayes

3. Lecture 3. Y Z[1/p]Hom (Sch/k) (Y, X).

NOTES ON FLAT MORPHISMS AND THE FPQC TOPOLOGY

9. Birational Maps and Blowing Up

INTERSECTION THEORY CLASS 19

Math 797W Homework 4

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25

INTERSECTION THEORY CLASS 12

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48

NOTES ON FIBER DIMENSION

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 5

Summer Algebraic Geometry Seminar

APPLICATIONS OF LOCAL COHOMOLOGY

INTERSECTION THEORY CLASS 1

ON THE COHEN-MACAULAYNESS OF CERTAIN HYPERPLANE ARRANGEMENTS SPUR FINAL PAPER, SUMMER 2014

Algebraic Geometry. Andreas Gathmann. Notes for a class. taught at the University of Kaiserslautern 2002/2003

1. Algebraic vector bundles. Affine Varieties

Algebraic Geometry. Question: What regular polygons can be inscribed in an ellipse?

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday 10 February 2004 (Day 1)

A ne Algebraic Varieties Undergraduate Seminars: Toric Varieties

Commutative algebra 19 May Jan Draisma TU Eindhoven and VU Amsterdam

Algebraic varieties. Chapter A ne varieties

SCHEMES. David Harari. Tsinghua, February-March 2005

INTRODUCTION TO ALGEBRAIC GEOMETRY. Throughout these notes all rings will be commutative with identity. k will be an algebraically

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

Math 203A - Solution Set 1

Math 40510, Algebraic Geometry

Lecture 2 Sheaves and Functors

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

n P say, then (X A Y ) P

Smooth morphisms. Peter Bruin 21 February 2007

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 43 AND 44

ON A THEOREM OF CAMPANA AND PĂUN

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS

HILBERT FUNCTIONS. 1. Introduction

10. Noether Normalization and Hilbert s Nullstellensatz

π X : X Y X and π Y : X Y Y

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 21

12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n

12. Hilbert Polynomials and Bézout s Theorem

Transcription:

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 14 RAVI VAKIL Contents 1. Dimension 1 1.1. Last time 1 1.2. An algebraic definition of dimension. 3 1.3. Other facts that are not hard to prove 4 2. Non-singularity: a beginning 4 2.1. A more algebraic definition of nonsingularity; hence nonsingularity is intrinsic 5 Problem sets back at end. If pages 26 27 of Eisenbud-Harris are missing in your copy, let me know; Alex Ghitza has kindly made a bunch of copies. Come by and ask me questions! Last time I said that we would call a dominant rational map Y X finite if the induced morphism of function fields k(x) k(y ) is a finite extension. That s not really in keeping with standard usage, so let me redefine it as generically finite. 1. Dimension I ll start by reviewing what I mentioned last time on dimension. But first, let me make a few algebraic remarks, on things such as transcendence degrees of finitely-generated field extensions. You should think about the statements I make; I think you ll find them all believable. Of course, one needs to properly prove everything. If you ve already seen these remarks, great; if you re taking Commutative Algebra, that s great too; and otherwise, you should convince yourself that the statements are reasonable, and treat them as black boxes. Date: Tuesday, October 26, 1999. 1

1.1. Last time. Definition. If X is a prevariety defined over k, define dim X = tr.d. k k(x). If Z is a closed subset of X, thenzhas pure dimension r if each of its components has dimension r. A variety of dimension 1 is a curve, a variety of dimension 2 is a surface, a variety of dimension n is an n-fold. Observation. dim U =dimx. If U X is a nonempty open subset, then k(u) = k(x), so I mentioned an algebraic fact, which I proved (albeit imperfectly). Lemma. Let R be an integral domain over k, p R a prime ideal. Then tr.d. k R tr.d. k R/p, with equality iff P = {0} or both sides are infinite. Geometrically, this translates into: Proposition. If Y is a closed subprevariety of X, then dim Y<dim X. Summary of proof: can reduce to an affine open meeting Y by earlier observation, then use lemma. Definition. Call the difference the codimension of Y in X. So for example, if the codimension is 1, there are no other subvarieties in between Y and X. I then quoted a result from commutative algebra: Theorem (Krull s Hauptidealsatz, or Principal Ideal Theorem). Suppose R is a finitely generated integral domain over k, f R, p a minimal prime of (f) (i.e. minimal among the prime ideals containing it). Then if f 0, tr.d.r/p = tr.d.r 1. (Proof omitted.) Let me repeat why, in geometrical situations, this is very reasonable. For example, let R = k[x, y, z], and let f be some polynomial, say xy(x y 3 z 4 ). Notice that the vanishing set V (f) ={f=0}consists of two planes and this weird surface. The minimal primes containing (f) correspond to maximum subvarieties of A 3 contained in the vanishing set of f, so there are 3 of them. Intuitively, it is reasonable that all 3 have dimension 2. The immediate geometric consequence of this is: Theorem. Let X be a variety, U X open, g O X (U) a regular function on U, Z an irreducible component of V (g) U. Thenifg 0,dimZ=dimX 1. (U is a red herring, and doesn t add any complexity to the proof. Essentially: V (g) has pure codimension 1 for any non-zero g O X (X).) Proof. Take U 0 U to be any open affine meeting Z. Let R = O X (U 0 ) be its coordinate ring, and f =res U,U0 g R the restriction of our function g. 2

Then Z U 0 (being irreducible) corresponds to some prime ideal p R. Z is a maximal irreducible subset of V (g) U, soz U 0 is a maximal irreducible subset of V (f) U 0,sopis a minimal prime containing f, and we re in the situation of the Hauptidealsatz. Conversely, if Z is an irreducible closed subset of X of codimension 1, then for any open U meeting Z and for all non-zero functions f on U vanishing on Z, Z U is a component of f =0. Corollary. If X is a variety, with subvariety Z of codimension at least 2. Then there is a subvariety of W of codimension 1 containing Z. Proof. We can restrict to an affine open meeting Z, so without loss of generality assume X is affine. Then Z corresponds to a prime ideal p (0). Letf be any nonzero element of p. Then all the components of V (f) have codimension 1 (by the Principal Ideal Theorem). Hence Z isn t a component, so it must be contained in one. Corollary. If X is a variety, and Z is a maximal closed irreducible subset, smaller than X. ThendimZ= dimx 1. Corollary. Suppose Z 0 Z 1 Z 2 Z r = X (where no is an inclusion) is a maximal chain of closed irreducible subsets of X. Then dim X= r. Proof. By induction on X. (Discuss a bit.) Remark. This is a good initial definition to make for schemes; our original variety definition involves the field k. Exercise (possibly on the next problem set). Check that Spec Z is a curve. Corollary. Let X be a variety and let Z be a component of V ((f 1,...,f r )), where f i O X (X). Then codim Z r. (Explain.) Corollary. Let U be an affine variety, Z a closed irreducible subset. Let r = codim Z. Then there are f 1,..., f r in A(U) =O U (U) such that Z is a component of V ((f 1,...,f r )). Proof. We did the case r = 1 earlier, and the proof is the same. 1.2. An algebraic definition of dimension. Given a Noetherian local ring O, you can attach an integer called the Krull dimension. (This will come up towards the end of this semester s commutative algebra class.) 3

It s defined as the length r of the longest chain of prime ideals P 0 P 1 P n =m O. (Here m is the maximal ideal.) Corollary. The dimension of a variety X is the Krull dimension of any of the stalks of the structure sheaf. Proof. Fix a point p. Translating the Krull definition into geometry, we re asking about the longest chain of subvarieties of X containing p. But we already know that this is dim X. 1.3. Other facts that are not hard to prove. (Proofs are omitted for the first 2.) Proposition. If X is an affine variety with coordinate ring R, wherer is a unique factorization domain. Then every closed codimension 1 subset equals V ((f)) for some f R. Proposition. dim X Y =dimx+dimy. Proposition. The Zariski topology on a dimension 1 prevariety is the cofinite topology. (Explain.) We ll use this later when we study curves. 2. Non-singularity: a beginning For a reference, see Hartshorne I.5 or Shafarevich, the start of Ch. II. Some intuition, in the classical topology. Consider the plane curve y = x + x 2 in C 2. Why is it smooth? What is the tangent line? (Discuss.) What about y = x + z + y 2, x = y + z + x 3? How about y = x + z + y 2, y = x + z + y 4? There are no constant terms. All we care about are the linear terms. In the ring k[x, y, z] with maximal ideal m, we care about m/m 2. Classically, something is smooth of dimension n if there is a local isomorphism with C n. I ll let you check that this is the same as the following definition. Definition. Let Y be a dimension d affine variety in A n (with coordinates x 1,..., x n. Suppose Y is defined by equations f 1,..., f t (i.e. I(Y ) is generated by the f i ; recall that any ideal in k[x 1,...,x n ] is finitely generated!). Warning: We know that t is at least the codimension n d, but they two aren t necessarily equal! Then Y A n is nonsingular at a point p Y if the rank of the Jacobian matrix ( f i / x j (p)) i,j is n d. 4

I still must convince you that this is a reasonable definition, and in particular, that this agrees with the old definition. I ll let you check that in the classical topology, if Y is nonsingular at a in this sense, then there is a (classical) neighbourhood of a isomorphic to an open set in C n. I ll do an example first. Consider our earlier example, x y + z + y 2 =0, x+y+z+x 3 =0. Soour point is the origin, f 1 = x y + z + y 2, f 2 = x + y + z + x 3. The two intersect in a curve, of dimension 1. The Jacobian matrix is J = ( 1 1 1 1 1 1 Indeed the rank of the matrix J is 3-1=2. I argued (with too much hand-waving) that the implicit function theorem shows (in the case k = C) that the Jacobian condition implies that X is a manifold at p; in the case above, consider the inverse of the projection (x, y, z) t = x + y + z. ). 2.1. A more algebraic definition of nonsingularity; hence nonsingularity is intrinsic. You d think that the nonsingularity of a point of Y wouldn t depend on how you stuck it in an affine space, and you d be right; but the above definition does depend on that, so it isn t clear that nonsingularity really is intrinsic. We ll show this now. Algebraic Definition. Let A be a noetherian local ring with maximal ideal m and algebraically residue field k. ThenAis a regular local ring if dim k m/m 2 = dim A. The reason this will be relevant is: Theorem. Let Y A n be an affine variety. Let p Y be a point. Then Y is nonsingular at p if and only if the local ring O Y,p is a regular local ring. We ll prove this soon. Thus the concept of nonsingularity is intrinsic, so we can make the following definitions: Definition. Let Y be any prevariety. Then Y is nonsingular at a point p Y if the local ring O Y,p is a regular local ring; otherwise it is singular at p. Y is nonsingular if it is nonsingular at any point. Otherwise it is singular. Remark. To check that something is singular, it is still easier to use the Jacobian definition. We make this more general definition because it is, well, more general. Theorem. Let A be the localization of k[x 1,...,x n ] at the origin, so A has dimension n. Thenm/m 2 are naturally isomorphic to the vector space (α 1,...,α n ) k n (call it V ), where points of the vector space can be associated with linear forms α 1 x 1 +...α n x n. Hence A is a regular local ring. 5

The proof will be enlightening (hopefully) for several reasons. Proof. The morphism V m/m 2 is just given by (α 1,...,α n ) α 1 x 1 +...α n x n. The morphism m/m 2 is given by f A ( f/ x 1 (0,..., 0),..., f/ x n (0,..., 0)) (where f vanishes at the origin). To show that this is well-defined, we need to check that if f m 2,thenf (0,..., 0). But if f m 2,thenf= i g ih i,whereg i,h i are in m. Then by the chain rule, (g i h i )/ x 1 = g i h i / x 1 + h i g i / x 1,soindeed if f m 2 then f (0,..., 0) Finally, we need to show that they compositions are the identity. The map V m/m 2 V is the identity (show it), so what s left is to show that m/m 2 V m/m 2 is also the identity; this comes down to the fact that if f 0, then f m 2. Important observation. Notice that the elements of m/m 2 are naturally identified with linear functions on A n.nowa n can canonically be identified with the tangent space of A n at the origin. So we ve made an identification of m/m 2 with the cotangent space of A n at the origin. Based on this observation: Definition. Let (A, m) be the local ring of a point p Y. Call m/m 2 the Zariski co-tangent space to Y at p, and(m/m 2 ) the Zariski tangent space. Exercise (that I will give on Thursday). Suppose f : X Y is a morphism of varieties, with f(p) =q. Show that there are natural morphisms f : m q /m 2 q m p /m 2 p (the induced map on cotangent spaces) and f :(m p /m 2 p) (m q /m 2 q) (the induced map on tangent spaces). (If you imagine what is happening on the level of tangent spaces and cotangent spaces of smooth manifolds, this is quite reasonable.) If φ is the vertical projection of the parabola x = y 2 onto the x-axis, show that the induced map of tangent spaces at the origin is the zero map. Coming next: Examples. Checking for nonsingularity in projective space. The singular points form a closed subset. 6