Lecture 7. Pile Analysis

Similar documents
Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Monopile design

Axially Loaded Piles

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg

Gapping effects on the lateral stiffness of piles in cohesive soil

PILE SOIL INTERACTION MOMENT AREA METHOD

Project. First Saved Monday, June 27, 2011 Last Saved Wednesday, June 29, 2011 Product Version 13.0 Release

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS

Theory of Shear Strength

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013

Landslide FE Stability Analysis

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

Resonant Column and Torsional Cyclic Shear System

Theory of Shear Strength

Analysis of Pile Foundation Subjected to Lateral and Vertical Loads

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE

Chapter 5 Shear Strength of Soil

Implementation of Laterally Loaded Piles in Multi-Layer Soils

1.8 Unconfined Compression Test

CHAPTER 8 CALCULATION THEORY

Chapter (11) Pile Foundations

Report No. K-TRAN: KU-10-2 FINAL REPORT November 2013

Engineeringmanuals. Part2

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

CPT Data Interpretation Theory Manual

Application of cyclic accumulation models for undrained and partially drained general boundary value problems

Analysis of pile foundation Simplified methods to analyse the pile foundation under lateral and vertical loads

2D Liquefaction Analysis for Bridge Abutment

Pre-failure Deformability of Geomaterials. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

Investigation of Pile- Soil Interaction Subjected to Lateral Loads in Layered Soils

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

Deep Foundations 2. Load Capacity of a Single Pile

Collapsible Soils Definitions

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Ch 5 Strength and Stiffness of Sands

Analysis of a single pile settlement

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

PGroupN background theory

Pile-Soil Interaction in Unsaturated Soil Conditions


!!!!!! Piles Capacity Reference Manual

SHEAR STRENGTH OF SOIL

USER S MANUAL. 1D Seismic Site Response Analysis Example. University of California: San Diego.

Soil strength. the strength depends on the applied stress. water pressures are required

Geotechnical issues in seismic assessments: When do I need a geotechnical specialist?

Shear Strength of Soils

Ch 4a Stress, Strain and Shearing

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

Chapter (12) Instructor : Dr. Jehad Hamad

J. Paul Guyer, P.E., R.A.

Dynamic Analysis to Study Soil-Pile Interaction Effects

SHEAR STRENGTH OF SOIL

Mechanical properties 1 Elastic behaviour of materials

HKIE-GD Workshop on Foundation Engineering 7 May Shallow Foundations. Dr Limin Zhang Hong Kong University of Science and Technology

ANALYSIS OF LATERALLY LOADED FIXED HEADED SINGLE FLOATING PILE IN MULTILAYERED SOIL USING BEF APPROACH

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

Rock Berm Restraint of an Untrenched Pipeline on Soft Clay

Soil Properties - II

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS

Nonlinear pushover analysis for pile foundations

Piles Capacity Reference Manual

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Module 3. DYNAMIC SOIL PROPERTIES (Lectures 10 to 16)

OPTIMAL SHAKEDOWN ANALYSIS OF LATERALLY LOADED PILE WITH LIMITED RESIDUAL STRAIN ENERGY

Biaxial Analysis of General Shaped Base Plates

Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening

Copyright. magazine. bearing capacity and modulus of subgrade reaction? Modulus of Subgrade Reaction (Ks)

Numerical Modelling of Dynamic Earth Force Transmission to Underground Structures

Interpretation of Pile Integrity Test (PIT) Results

PILE LOAD TEST IN OLD ALLUVIUM

Laboratory Testing Total & Effective Stress Analysis

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading

SCALE EFFECTS IN LATERAL LOAD RESPONSE OF LARGE DIAMETER MONOPILES

Advanced Lateral Spread Modeling

Soil Behaviour in Earthquake Geotechnics

Cyclic lateral response of piles in dry sand: Effect of pile slenderness

Verification of a Micropile Foundation

(Refer Slide Time: 02:18)

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date:

Harmonized European standards for construction in Egypt

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Loading capacity of yielding connections used in steel arch roadway supports

SHEAR STRENGTH OF SOIL UNCONFINED COMPRESSION TEST

AN ABSTRACT OF THE THESIS OF

Foundation models for the dynamic response of offshore wind turbines

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete.

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

Using the Timoshenko Beam Bond Model: Example Problem

Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung

CAEFEM v9.5 Information

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium

Transcription:

Lecture 7 14.5 Release Pile Analysis 2012 ANSYS, Inc. February 9, 2013 1 Release 14.5

Pile definition in Mechanical - There are a number of methods that can be used to analyze piled foundations in ANSYS Mechanical: SPLINTER (a standalone nonlinear solver that was originally developed as part of the ASAS suite) Matrix definition (MAT27) Spring definition (COMBIN14) Direct Definition of P-Y and T-Z curves (COMBIN39) The SPLINTER method will be described here 2012 ANSYS, Inc. February 9, 2013 2 Release 14.5

Soil-pile interaction - Soils are classified in four different types based on their particle size and shape: Soil Type Particle Size (mm) Particle Shape Gravel 2 60 Granular Sand 0.06-2 Granular Silt 0.002 0.06 Granular Clay < 0.002 Flat plate - The lateral resistance of the soil near the mud line is significant for many reasons, and the effects of this resistance of scour and soil disturbance during pile installation should be considered. 2012 ANSYS, Inc. February 9, 2013 3 Release 14.5

Soil-pile interaction (cont.) - The flexibility of the soil makes the soil-structure system less stiff than if the structure were on a fixed base. This loss of stiffness can increase ωf which can increase the dynamic response of the system (Watt et al. 1976) - Three important features need to be considered: a. Soil is a nonlinear material (stiffness decreases with increasing shear stress) b. Soil strength and stiffness is affected by repeated cycles of load c. Soil exhibits damping, which increases with increasing shear amplitude, when subjected to cyclic loading 2012 ANSYS, Inc. February 9, 2013 4 Release 14.5

Soil-pile interaction (cont.) - The nonlinear foundation technique in SPLINTER utilises a FE representation of the pile and soil system as shown below. The soil stiffness is modelled with spring elements in the lateral and vertical direction - The soil springs are characterised by a nonlinear force-deflection curve. These curves are known as the P-Y and T-Z curves for lateral and axial (skin friction) behaviour respectively - It is because of the nonlinear nature of the soil that SPLINTER carries out an iterative solution technique, each iteration taking an assumed, or calculated, value for the soil spring stiffness based on the previous iteration (see Newton-Raphson method) 2012 ANSYS, Inc. February 9, 2013 5 Release 14.5

Soil-pile interaction (cont.) - Soils are highly nonlinear in their behaviour, Young s, Shear and Bulk Modulus varies with loading. The nonlinearity is caused by the soil particles moving relative to one another as the load is applied. - For preliminary decisions the relevant values in BS5930, BS1377 and BS8004 may be adequate. - In situ measurements are necessary with soil samples at later stages Chakrabarti, SK (2005) Handbook Offshore Engring, Vol.1 2012 ANSYS, Inc. February 9, 2013 6 Release 14.5

Soil-pile interaction (cont.) - The generation of lateral soil resistance deflection (P-Y) curves should be constructed using stress-strain data from samples. Various methods of estimating P-Y curves for different soil types exist in the literature: Matlock (1970), Reese & Cox (1975), O Neill & Murchinson (1983) LATERAL CAPACITY FOR SOFT CLAY The p-y curves for the short-term static load case can be generated from the following table p/pu y/yc 0.00 0.0 0.50 1.0 p u cx 3c X J p u 9c D y 2.5 D c c and for X X R where pu is ult resistance, psi 0.72 1.0 c = undrained shear strength for undisturbed clay samples (psi) γ = eff unit wgt of soil (lb/in3) 1.00 8.0 D = pile dia (in.) J = dimensionless empirical factor ranging from 0.25 to 0.5 X = depth below the sea bed (in.) 1.00 XR = depth below sea bed to which the reduced resistance zone extends (in.) Min values approx. 2.5D p = actual lateral resistance (psi) y = actual lateral deflection (in.) εc = strain which occurs at one-half the max stress on lab undrained compression tests of undisturbed soil samples 2012 ANSYS, Inc. February 9, 2013 7 Release 14.5

Soil-pile interaction (cont.) LATERAL CAPACITY FOR STIFF CLAY The ultimate bearing capacity of stiff clay (c > 96kPa) would vary between 8c<Pu<12c LATERAL CAPACITY FOR SAND The ultimate lateral capacity for sand in shallow depths is determined from P us while for deep depths is given from ( C1H C2D) H P ud C D H 3 Where Pu = ult resistance (psi) γ = εff soil wgt (lb/in3) Η = depth below sea bed(in) φ = angle of internal friction of sand (deg) C1, C2, C3 coeff determined from tables (see next slide) D = average pile dia from surface to depth (in) 2012 ANSYS, Inc. February 9, 2013 8 Release 14.5

Soil-pile interaction (cont.) Once the previous values are found the load deflection curves for sand are given by kh P( y) APu tanh y APu Where A = factor to account for cyclic or static loading Pu = ult resistance (psi) k = initial modulus of subgrade reaction (lb/in3) See fig below Η = depth (in) y = lateral deflection (in) Relative density is an indication of the packing in comparison with the 2012 ANSYS, Inc. February 9, 2013 9 min (0% relative density) and max (100% relative density) densities achievable Release 14.5

Soil-pile interaction (cont.) - Two solution methods exist for determining the soil stiffness from P-Y and T-Z curves, namely Tangent and Secant stiffness. In general the tangent stiffness method (default) will converge faster. - Soil properties are assumed to vary linearly between the defined points, for points outside the defined range linear extrapolation is assumed. - Both symmetric and asymmetric curves may be defined for soil data - The option to include/ignore pile self weight, select method to use in derivation of soil stiffness, include/exclude second order effects is given in PILEGEN command 2012 ANSYS, Inc. February 9, 2013 10 Release 14.5

Soil-pile interaction (cont.) - Extreme weather phenomena and the passage of waves induce pressure changes on the seabed that may cause remoulding and a reduction in shear strength. This in turn can lead to shear failure in soft sediments on sloping ground - Mudslides (depressions in the seabed) should be considered in the design process and a piled structure should withstand a mudslide through the lowest plan bracing level - This problem can be taken into account in SPLINTER when defining the soil properties (file_soil.txt). This ascii file should be in the solver files directory (RC on Solution>Open Solver Files Directory). For the syntax of this file see // Advanced Analysis Guide // 15. Soil-Pile-Structure Analysis // 15.2. Soil Data Definition and Examples 2012 ANSYS, Inc. February 9, 2013 11 Release 14.5

Nonlinear solution using linear solvers - In a nonlinear analysis, the response cannot be predicted directly with a set of linear equations - However, a nonlinear structure can be analyzed using an iterative series of linear approximations, with corrections - ANSYS uses an iterative process called the Newton-Raphson Method. Each iteration is known as an equilibrium iteration Load F K1 K2 1 K4 K3 2 3 4 A full Newton-Raphson iterative analysis for one increment of load. (Four iterations shown) u Displacement 2012 ANSYS, Inc. February 9, 2013 12 Release 14.5

Nonlinear solution using linear solvers The actual relationship between load and displacement (shown as a dotted line) is not known beforehand. Consequently, a series of linear approximations with corrections is performed. This is a simplified explanation of the Newton-Raphson method (shown as solid red lines) In the Newton-Raphson Method, the total Newton-Raphson Method load F a is applied in iteration 1. The result F is x 1. From the displacements, the internal 4 F 3 4 forces F 1 can be calculated. If F a F 1, then F 2 3 2 the system is not in equilibrium. Hence, a new stiffness matrix (slope of red line) is F 1 1 calculated based on the current conditions. The difference of F a - F 1 is the out-of-balance or residual forces. The residual forces must be small enough for the solution to converge x This process is repeated until F a F i. In this example, after iteration 4, 1 the x2 system x3 x4 achieves equilibrium and the solution is said to be converged 2012 ANSYS, Inc. February 9, 2013 13 Release 14.5

Nonlinear solution using linear solvers The difference between external and internal loads, {F a } - {F nr }, is called the residual. It is a measure of the force imbalance in the structure. The goal is to iterate until the residual becomes acceptably small; that is, until the solution is converged. When convergence is achieved, the solution is in equilibrium, within an acceptable tolerance. {F a } {F nr } { F a F nr 2012 ANSYS, Inc. February 9, 2013 14 Release 14.5 u

SPLINTER To use SPLINTER in Workbench Mechanical, the process required on a jacket model is: Define named selections for each Pile cap node named Pile1, Pile2 etc. Request approx. 5 loadsteps and set up with small time increment (the loadsteps are needed to allow iteration on soil curves; the small time step is needed as the ocean loading is time dependant) Insert a command object to define the ocean Insert a command object to define the piles Insert a command object to solve each iteration 2012 ANSYS, Inc. February 9, 2013 15 Release 14.5

Workshop 5 Pile Analysis Workshop 5 Add piles to a jacket structure Goal: Use command objects & become acquainted with MAPDL Use local parameters in command object Study the necessary input for SPLINTER (strata, curves, mudslide etc.) Get to know the analysis settings for a soil-pile analysis Study the output from SPLINTER 2012 ANSYS, Inc. February 9, 2013 16 Release 14.5