Tensor Analysis Author: Harald Höller last modified: Licence: Creative Commons Lizenz by-nc-sa 3.0 at

Similar documents
? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Electromagnetism HW 1 math review

2.20 Fall 2018 Math Review

Tensors, and differential forms - Lecture 2

PHY481: Electromagnetism

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

NIELINIOWA OPTYKA MOLEKULARNA

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces.

Mathematical Preliminaries

INTEGRALSATSER VEKTORANALYS. (indexräkning) Kursvecka 4. and CARTESIAN TENSORS. Kapitel 8 9. Sidor NABLA OPERATOR,

PHY481: Electromagnetism

Tensor Analysis in Euclidean Space

A Primer on Three Vectors

Vector and Tensor Calculus

Math review. Math review

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

1.4 LECTURE 4. Tensors and Vector Identities

VECTORS, TENSORS AND INDEX NOTATION

Christoffel Symbols. 1 In General Topologies. Joshua Albert. September 28, W. First we say W : λ n = x µ (λ) so that the world

The Matrix Representation of a Three-Dimensional Rotation Revisited

u z u y u x ChE 342 Vectors 1 VECTORS Figure 1 Basic Definitions Vectors have magnitude and direction: u = i u x + j u y + k u z (1)

Derivatives in General Relativity

Some elements of vector and tensor analysis and the Dirac δ-function

Exercises in field theory

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector.

Physics 110. Electricity and Magnetism. Professor Dine. Spring, Handout: Vectors and Tensors: Everything You Need to Know

Classical Mechanics in Hamiltonian Form

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Basic mathematics for nano-engineers (II)

Physics 6303 Lecture 2 August 22, 2018

Classical Mechanics Solutions 1.

Lecture Notes Introduction to Vector Analysis MATH 332

L8. Basic concepts of stress and equilibrium

Introduction and Vectors Lecture 1

Vectors. Three dimensions. (a) Cartesian coordinates ds is the distance from x to x + dx. ds 2 = dx 2 + dy 2 + dz 2 = g ij dx i dx j (1)

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis.

A.1 Appendix on Cartesian tensors

1.2 Euclidean spacetime: old wine in a new bottle

Solutions to Sample Questions for Final Exam

Physics 236a assignment, Week 2:

1.13 The Levi-Civita Tensor and Hodge Dualisation

2 Tensor Notation. 2.1 Cartesian Tensors

Week 6: Differential geometry I

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Mathematics that Every Physicist should Know: Scalar, Vector, and Tensor Fields in the Space of Real n- Dimensional Independent Variable with Metric

Vector analysis and vector identities by means of cartesian tensors

Spherical Coordinates

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

Introduction to Tensor Notation

Lecture notes on introduction to tensors. K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Vectors. (Dated: August ) I. PROPERTIES OF UNIT ANSTISYMMETRIC TENSOR

Gradient, Divergence and Curl in Curvilinear Coordinates

1. Divergence of a product: Given that φ is a scalar field and v a vector field, show that

Cylindrical Coordinates

Index Notation for Vector Calculus

1 Vectors and Tensors

Mathematical Notation Math Calculus & Analytic Geometry III

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

1 Differential Operators in Curvilinear Coordinates

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

Main Results of Vector Analysis

Before you begin read these instructions carefully:

Contents. Part I Vector Analysis

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Chapter 1. Vector Analysis

CONTINUUM MECHANICS. lecture notes 2003 jp dr.-ing. habil. ellen kuhl technical university of kaiserslautern

Special and General Relativity (PHZ 4601/5606) Fall 2018 Classwork and Homework. Every exercise counts 10 points unless stated differently.

MAT 211 Final Exam. Spring Jennings. Show your work!

Joint Distributions: Part Two 1

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

Physics 6303 Lecture 3 August 27, 2018

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

Contravariant and Covariant as Transforms

RANS Equations in Curvilinear Coordinates

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Quantum Physics II (8.05) Fall 2004 Assignment 3

Chapter 7. Kinematics. 7.1 Tensor fields

Mechanics Physics 151

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Differential Kinematics

1.3 LECTURE 3. Vector Product

Tensors and Special Relativity

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

Getting started: CFD notation

1. Rotations in 3D, so(3), and su(2). * version 2.0 *

Multiple Integrals and Vector Calculus: Synopsis

Electromagnetic Theory Prof. Michael J. Ruiz, UNC Asheville (doctorphys on YouTube) Chapter A Notes. Vector Analysis

Module 4M12: Partial Differential Equations and Variational Methods IndexNotationandVariationalMethods

231 Outline Solutions Tutorial Sheet 4, 5 and November 2007

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Without a Vector Calculus Coordinate System

Homework 7-8 Solutions. Problems

CHAPTER 7 DIV, GRAD, AND CURL

Basic concepts to start Mechanics of Materials

ELEMENTARY LINEAR ALGEBRA

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Transcription:

Tensor Analysis Author: Harald Höller last modified: 02.12.09 Licence: Creative Commons Lizenz by-nc-sa 3.0 at Levi-Civita Symbol (Ε - Tensor)

2 Tensor_analysis_m6.nb Ε = Ε = Ε = 1 123 231 312 Ε = Ε = Ε = -1 132 213 321 Some useful relations between Ε -tensors and the Kronecker delta Mathematica commands used in the following section In[1]:=? Sum i max Sum f, i, i max evaluates the sum f. Sum f, i, i min, i max starts with i i min. Sum f, i, i min, i max, di uses steps di. Sumexpr, i, i 1, i 2, uses successive values i 1, i 2,. i 1 Sum f, i, i min, i max, j, j min, j max, evaluates the multiple sum i max j max f. i i min j j min In[2]:=? Signature Signaturelist gives the signature of the permutation needed to place the elements of list in canonical order. In[3]:=? KroneckerDelta KroneckerDeltan 1, n 2, gives the Kronecker delta n1 n 2, equal to 1 if all the n i are equal, and 0 otherwise.

Tensor_analysis_m6.nb 3 In[4]:=? Table Tableexpr, i max generates a list of i max copies of expr. Tableexpr, i, i max generates a list of the values of expr when i runs from 1 to i max. Tableexpr, i, i min, i max starts with i i min. Tableexpr, i, i min, i max, di uses steps di. Tableexpr, i, i 1, i 2, uses the successive values i 1, i 2,. Tableexpr, i, i min, i max, j, j min, j max, gives a nested list. The list associated with i is outermost. In[5]:=? MatrixForm MatrixFormlist prints with the elements of list arranged in a regular array. Summation of two Ε - tensors over all indices Ε Ε = 6 ijk ijk In[6]:= SumSignaturei, j, k Signaturei, j, k, i, 3, j, 3, k, 3 Out[6]= 6 Summation of two Ε - tensors over last two indices Ε Ε = 2 ijk ljk il

4 Tensor_analysis_m6.nb In[7]:= TableSumSignaturei, j, k Signaturel, j, k, j, 3, k, 3, i, 3, l, 3 MatrixForm Out[7]//MatrixForm= 2 0 0 0 2 0 0 0 2 Rule of thumb: antisymmetric times symmetric = 0 Ε = 0 ijk ij In[8]:= SumSignaturei, j, k KroneckerDeltai, j, i, 3, j, 3 Out[8]= 0 Contraction of Kronecker delta = 3 ij ij In[9]:= SumKroneckerDeltai, j KroneckerDeltai, j, i, 3, j, 3 Out[9]= 3 Summation of two Kronecker deltas over one index = ij jk ik

Tensor_analysis_m6.nb 5 In[10]:= TableSumKroneckerDeltai, j KroneckerDeltaj, k, j, 3, i, 3, k, 3 MatrixForm Out[10]//MatrixForm= 1 0 0 0 1 0 0 0 1 Differential Operators in General Coordinates Physics is full of differential operators and in many cases, the simple Euclidean vector space won't provide the coordinates of choice. Thus, often we will have to transform into problem-oriented coordinate systems. With the package "VectorAnalysis", Mathematica supports a list of useful tensorial operations, like gradient, divergence, rotation. In the following section we want to work out some applications to special coordinates and once more compare the Mathematica-way with the "classical" approach. In[11]:= Needs"VectorAnalysis`" Nabla-operator in Cartesian coordinates Classical approach The nabla operator is defined as the sum of derivations with respect to the coordinates times the corresponding base vector. In Cartesian coordinates e x, e y, e z In[12]:= e x : 1, 0, 0 e y : 0, 1, 0 e z : 0, 0, 1

6 Tensor_analysis_m6.nb this yields In[15]:= Nabla func, x, y, z Dfuncx, y, z, x e x Dfuncx, y, z, y e y Dfuncx, y, z, z e z Out[15]= func 1,0,0 x, y, z, func 0,1,0 x, y, z, func 0,0,1 x, y, z Example: Scalar function R We want to check the known relation grad r x r and define as a scalar function the lenght of a vector x by r x 2. In[16]:= Rx, y, z : Sqrtx^2 y ^2 z^2 In[17]:= NablaR, x, y, z MatrixForm Out[17]//MatrixForm= x x 2 y 2 z 2 y x 2 y 2 z 2 z x 2 y 2 z 2 The gradient of a scalar is a tensor of rank 1 i.e. a vectorfield.

Tensor_analysis_m6.nb 7 Mathematica command Grad At first we need to define the coordinate system. We need the following commands In[18]:=? SetCoordinates SetCoordinatescoordsys sets the default coordinate system to be coordsys with default variables. SetCoordinatescoordsysc 1, c 2, c 3 sets the default coordinate system to be coordsys with variables c 1, c 2, and c 3. In[19]:=? Cartesian Cartesian represents the Cartesian coordinate system with default variables Xx, Yy and Zz. Cartesianx, y, z represents the Cartesian coordinate system with variables x, y, and z. In[20]:= SetCoordinatesCartesianx, y, z Out[20]= Cartesianx, y, z The Grad command simply confirms the upper result. In[21]:=? Grad Grad f gives the gradient, f, of the scalar function f in the default coordinate system. Grad f, coordsys gives the gradient of f in the coordinate system coordsys.

8 Tensor_analysis_m6.nb In[22]:= GradSqrtx^2 y ^2 z^2 Out[22]= x x 2 y 2 z 2, y x 2 y 2 z 2, z x 2 y 2 z 2 Example: Vector field In[23]:= Px, y, z : x x 2 y 2 z 2, y x 2 y 2 z 2, z x 2 y 2 z 2 In[24]:= NablaP, x, y, z FullSimplify Out[24]= y 2 z 2 x y x z,,, x 2 y 2 z 2 32 x 2 y 2 z 2 32 x 2 y 2 z 2 32 x y, x 2 y 2 z 2 32 x 2 z 2 y z x z y z,,,, x 2 y 2 z 2 32 x 2 y 2 z 2 32 x 2 y 2 z 2 32 x 2 y 2 z 2 32 x 2 y 2 x 2 y 2 z 2 32 The nabla operator applied on a tensor of rank 1 produces a tensor of rank 2. The divergence of our vector field P is given by the trace of the gradient on P. The divergence is of course a scalar again. In[25]:=? Tr Trlist finds the trace of the matrix or tensor list. Trlist, f finds a generalized trace, combining terms with f instead of Plus. Trlist, f, n goes down to level n in list.

Tensor_analysis_m6.nb 9 In[26]:= TrNablaP, x, y, z Out[26]= x 2 x 2 y 2 z 2 32 y 2 x 2 y 2 z 2 32 z 2 x 2 y 2 z 2 32 3 x 2 y 2 z 2 In[27]:= FullSimplify Out[27]= 2 x 2 y 2 z 2 Again we confirm with the Mathematica command (Div). In[28]:=? Div Div f gives the divergence, f, of the vector field f in the default coordinate system. Div f, coordsys gives the divergence of f in the coordinate system coordsys. In[29]:= Div x x 2 y 2 z 2, y x 2 y 2 z 2, z x 2 y 2 z 2 FullSimplify Out[29]= 2 x 2 y 2 z 2

10 Tensor_analysis_m6.nb Nabla Operator in spherical coordinates The Mathematica-way In[30]:= Clear"Global` " In[31]:=? Spherical Spherical represents the spherical coordinate system with default variables Rr, Ttheta and Pphi. Sphericalr, Θ, Φ represents the spherical coordinate system with variables r, Θ and Φ. In[32]:= SetCoordinatesSphericalr, Θ, Φ Out[32]= Sphericalr, Θ, Φ In[33]:= Gradr Out[33]= 1, 0, 0 In[34]:= Div1, 0, 0 Out[34]= 2 r

Tensor_analysis_m6.nb 11 Alternatively Define spherical coordinates by their transformation rules In[35]:= x : r SinΘ CosΦ y : r SinΘ SinΦ z : r CosΘ and determine the Jacobian of the transformation In[38]:= Tij Dx, r, Dx, Θ, Dx, Φ, Dy, r, Dy, Θ, Dy, Φ, Dz, r, Dz, Θ, Dz, Φ Out[38]= CosΦ SinΘ, r CosΘ CosΦ, r SinΘ SinΦ, SinΘ SinΦ, r CosΘ SinΦ, r CosΦ SinΘ, CosΘ, r SinΘ, 0 and determine the base vectors. In[39]:= e r TransposeTij1 e Θ TransposeTij2 e Φ TransposeTij3 Out[39]= CosΦ SinΘ, SinΘ SinΦ, CosΘ Out[40]= r CosΘ CosΦ, r CosΘ SinΦ, r SinΘ Out[41]= r SinΘ SinΦ, r CosΦ SinΘ, 0

12 Tensor_analysis_m6.nb In[42]:= Nablaspher func, r, Θ, Φ Dfuncr, Θ, Φ, r e r Dfuncr, Θ, Φ, Θ e Θ Dfuncr, Θ, Φ, Φ e Φ Out[42]= r SinΘ SinΦ func 0,0,1 r, Θ, Φ r CosΘ CosΦ func 0,1,0 r, Θ, Φ CosΦ SinΘ func 1,0,0 r, Θ, Φ, r CosΦ SinΘ func 0,0,1 r, Θ, Φ r CosΘ SinΦ func 0,1,0 r, Θ, Φ SinΘ SinΦ func 1,0,0 r, Θ, Φ, r SinΘ func 0,1,0 r, Θ, Φ CosΘ func 1,0,0 r, Θ, Φ In[43]:= Assumingr 0, FullSimplifySqrtx^2 y ^2 z^2 Out[43]= r In[44]:= Rspherr, Θ, Φ : r In[45]:= NablaspherRspher, r, Θ, Φ FullSimplify Out[45]= CosΦ SinΘ, SinΘ SinΦ, CosΘ The same result looks quite different than the constant vector {1,0,0} from the Mathematica-way. However, the result is in perfect agreement, since it is only a different way of expressing the unit vector in r-direction. In[46]:= e r Out[46]= True