w2dynamics : operation and applications

Similar documents
Electronic correlations in models and materials. Jan Kuneš

Diagrammatic Monte Carlo methods for Fermions

Magnetic Moment Collapse drives Mott transition in MnO

Diagrammatic Monte Carlo simulation of quantum impurity models

Introduction to DMFT

6. Auxiliary field continuous time quantum Monte Carlo

Realistic Materials Simulations Using Dynamical Mean Field Theory

Continuous time QMC methods

A continuous time algorithm for quantum impurity models

An introduction to the dynamical mean-field theory. L. V. Pourovskii

NiO - hole doping and bandstructure of charge transfer insulator

Continuous Time Monte Carlo methods for fermions

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

O. Parcollet CEA-Saclay FRANCE

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Quantum Cluster Methods (CPT/CDMFT)

Continuous-time quantum Monte Carlo algorithms for impurity problems

Quantum impurities in a bosonic bath

Spin and orbital freezing in unconventional superconductors

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II)

Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions

The Gutzwiller Density Functional Theory

IMPACT ionization and thermalization in photo-doped Mott insulators

Dynamical Mean Field within Iterative Perturbation Theory

An efficient impurity-solver for the dynamical mean field theory algorithm

A theoretical study of the single-molecule transistor

FROM NODAL LIQUID TO NODAL INSULATOR

Time Evolving Block Decimation Algorithm

arxiv: v1 [cond-mat.str-el] 11 Nov 2013

1 GW+DMFT. KH Computational Physics QMC. Dynamical Mean Field Theory + Band Structure Method. Γ[G] = Trlog G Tr(ΣG) + Φ[G] (1)

Mott physics: from basic concepts to iron superconductors

Intermediate valence in Yb Intermetallic compounds

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Topological Kondo Insulators!

Realistic many-body calculations with spatial correlations and for systems with molecular orbitals

Spectral Density Functional Theory

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

The Hubbard model out of equilibrium - Insights from DMFT -

Electronic structure of correlated electron systems. Lecture 2

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

Role of Hund Coupling in Two-Orbital Systems

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Simulations of Quantum Dimer Models

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

DMFT for correlated bosons and boson-fermion mixtures

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

?What are the physics questions?

Quantum Lattice Models & Introduction to Exact Diagonalization

(r) 2.0 E N 1.0

Band calculations: Theory and Applications

Cluster Extensions to the Dynamical Mean-Field Theory

arxiv: v1 [cond-mat.str-el] 18 May 2010

Time-dependent DMRG:

IFP. AG Toschi & AG Held

Physics 239/139 Spring 2018 Assignment 2 Solutions

Modified Becke-Johnson (mbj) exchange potential

Bose-Hubbard Model (BHM) at Finite Temperature

Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory

Multipartite entanglement in fermionic systems via a geometric

4 Development of the LDA+DMFT Approach

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Accelerated Monte Carlo simulations with restricted Boltzmann machines

X-ray absorption spectroscopy.

Excitonic Condensation of Strongly Correlated Electrons. Jan Kuneš DFG FOR1346

Quantum impurity models Algorithms and applications

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

Phase Diagram of the Multi-Orbital Hubbard Model

Dual fermion approach to unconventional superconductivity and spin/charge density wave

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Strong Correlation Effects in Fullerene Molecules and Solids

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Luigi Paolasini

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Master theses & project works. AG Toschi & AG Held

MOTTNESS AND STRONG COUPLING

Transport Coefficients of the Anderson Model via the numerical renormalization group

Simulation of quantum dynamics and transport using multiconfiguration wave-function methods

Preface Introduction to the electron liquid

Mean field theories of quantum spin glasses

Numerical Methods in Many-body Physics

Angle-Resolved Two-Photon Photoemission of Mott Insulator

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Local moment approach to multi-orbital Anderson and Hubbard models

Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Quantum Cluster Methods: An introduction

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Transcription:

w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü)

A solver for multi-orbital problems For LDA+DMFT we need to solve an Anderson model containing one correlated impurity site, with typically several d-orbitals a =1,...,N orb H loc = Un a, n a, a + U n a,σ n b, σ +(U J)n a,σ n b,σ a>b,σ a=b J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) spin-flip pair-hopping

Hybridization-expansion the best continuous-time quantum Monte Carlo scheme to solve impurity models with complicated interactions (as e.g. the Kanamori Hamiltonian) is the hybridization-expansion ( CT-HYB ) terms leading to a bad sign problem in BSS / Hirsch-Fye -QMC H loc = Un a, n a, a + U n a,σ n b, σ +(U J)n a,σ n b,σ a>b,σ a =1,...,N orb a=b J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) spin-flip pair-hopping

References hybridization expansion P. Werner, et al., Phys. Rev. Lett. 97, 076405 (2006) P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006) K. Haule, Phys. Rev B 75, 155113 (2007) E. Gull, et al., Rev. Mod. Phys. 83, 349 (2011) N. Parragh, et al., Phys. Rev. B 86, 155158 (2012)! hybridization expansion - Krylov A. M. Laeuchli and P. Werner, Phys. Rev. B 76, 035116 (2007) T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986) Legendre representation L. Boehnke, et al., Phys. Rev. B 84, 075145 (2011)

The impurity-model (AIM) to be solved FROM SOMEWHERE F (τ) or, equivalently F (iω n ) In Exact Diagonalization : F (iω n )= l V 2 l iω n ε l G 0 CT-HYB calculation F (τ) H loc

Hybridization expansion Hamiltonian of the full Anderson model H = H loc + H bath + H hyb H hyb = l V α l c αa l + Vl α a l c α interaction picture perturbation expansion in the hybridization β β Z = 1 dτ 1 k! k 0 0 Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) Tr a e βh bath Ta l k (τ k )a l (τ k k) a l 1 (τ 1 )a l (τ 1 1) dτk α 1 α k α 1 α l k 1 l k l 1 l k V α 1 l 1 V α 1 l 1 V α k l k V α k lk brute force analytically : F(τ)

Sampling the local trace Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) after warmup H loc = Un a, n a, a + U n a,σ n b, σ +(U J)n a,σ n b,σ a>b,σ a=b J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) insertion One flavor of creation/ annihilation operators removal generalization to multiple flavors

Advantages of the Krylov scheme 7 orbitals with Kanamori interaction doable with Krylov! N. Parragh, et al., PRB 86, 155158 (2012) other CT-HYB scheme (so-called matrix-matrix ): H loc cheap exact time evolution (basis is the eigenbasis of ) matrix representation of annihilation/creation operators

Krylov implementation β... 0 bottleneck: computation of the local trace : Tr c e βh loc c αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) our basis: occupation numbers sparse matrix in our basis eff. matrix-vector product eigenvectors of H loc example for 1 orbital { 0,,, } e τ 1 H loc c α 1 e τ 1 H loc φ 0 with Lanczos e τh loc v p 1 k=0 ( τ) k H k k! loc v how many outer states are needed for the computation of the trace? how to keep the matrix-size as small as possible?

How many outer states? Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) = = φ 0 e βe(0) loc... φ0 + e β(e(1) loc E(0) loc ) φ 1 e βe(0) loc... φ1 +... β(e (1) at low-t: loc E(0) loc ) 1 we fix the outer state(s) because of c/c + we can still visit an excited state for a short time inside the trace φ i e βh loc... e τ 1 H loc c α 1 i=0 e τ 1 H loc φ i φ 0 φ 0 at low-t the trace is long easy to accommodate enough visits very controllable and convenient truncation parameter of Krylov CT-HYB at very low T we can restrict ourselves to the lowest multiplet

Tanabe-Sugano diagram for d 5 Kanamori full Coulomb high-spin e g 10Dq t 2g low-spin low-spin e g U=5.14eV J=0.71eV t 2g 10Dq low-spin F 0 =4eV F 2 =8.615eV F 4 =5.3846eV high-spin low-spin 10Dq (cubic crystal field) degeneracies high-spin low-spin 10Dq (cubic crystal field)

Exploiting conserved quantities good quantum numbers of H loc maximum block-diagonalization eigenvectors of H loc example for 1 orbital { 0,,, } e τ 1 H loc c α 1 e τ 1 H loc φ 0 with Lanczos e τh loc v p 1 k=0 ( τ) k H k k! loc v

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 1 +½ ½ P. Werner and A. J. Millis, PRB 74, 155107 (2006)

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 1 -½ ½

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2 1

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2 +1 1

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2 0 1

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2-1 1

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2 0 1

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b diagonal in the occupation-number basis off-diagonal the pattern of singly-occupied orbitals is conserved! PS -number N. Parragh, et al., PRB 86, 155158 (2012)

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot 1 +½

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot PS 1 +½ 1 PS = N orb 1 a=0 2 a (n a, n a, ) 2

Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot PS 1 +½ 2 PS = N orb 1 a=0 2 a (n a, n a, ) 2

Advantages of the PS -number N. Parragh, et al., PRB 86, 155158 (2012) PS = N orb 1 a=0 2 a (n a, n a, ) 2

Where do the operators go? We sample partition-function configurations 1 k! β β dτk 0 α 1 α k α 1 α l k 1 l k l 1 l k Z = dτ 1 k 0 Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) Tr a e βh bath Ta l k (τ k )a l (τ k k) a l 1 (τ 1 )a l (τ 1 1) V α 1 l 1 V α 1 l 1 V α k l k V α k lk p(k): distribution of the c operators U β Anderson model (βt=100) P. Werner, et al., PRL 97, 076405 (2006) Anderson-Holstein model (βt=400, ω 0 =0.2t) E. Gull, et al., RMP 83, 349 (2006)

Where do the operators go? We sample partition-function configurations 1 k! β β dτk 0 α 1 α k α 1 α l k 1 l k l 1 l k Z = dτ 1 k 0 Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) Tr a e βh bath Ta l k (τ k )a l (τ k k) a l 1 (τ 1 )a l (τ 1 1) V α 1 l 1 V α 1 l 1 V α k l k V α k lk p(k): distribution of the c operators but we have encountered situations with more complicated p(k): DOUBLE-PEAKED HISTOGRAM???

Where does the AIM come from? FROM SOMEWHERE F (τ) or, equivalently F (iω n ) plain vanilla DMFT LDA+DMFT H(k) in wannier90-format long-range ordered magnetic solutions enlarged basis ( PAM /dp-models) and DMFT+Hartree flexible and user-defined Python classes in w2dynamics various flavors of non-equivalent atoms/layers/ real-space schemes ( nanodmft and nanodγa )

plain vanilla DMFT LDA+DMFT H(k) in wannier90-format long-range ordered magnetic solutions enlarged basis ( PAM /dp-models) and DMFT+Hartree various flavors of non-equivalent atoms/layers/ real-space schemes ( nanodmft and nanodγa )

Periodic Anderson Model ( t dd -PAM )

Hole-doped Mott insulator 10% doping with t pd =0 n d =0.9 10% doping with t pd 0 n tot =n d +n p =2.9 all energies in units of t pp t dd =1/4

Histogram in the t dd -PAM spectral representation of the hyb. function CT-HYB histogram t pd =0.00 t pd =0.25 t pd =0.50 t pd =0.75 t pd =1.00 expansion order

How can we label the histogram peaks? Hubbard model (t pd =0) below half-filling σ = one possible way: order-resolved density-matrix (in Fock space) k σ m ρ α, α = αα α = 0,,, ρ 0, 0 ρ, ρ, ρ, φ i e βh loc......c α1(τ1) φ i i=0 a bit more of hybridization events with many spin up in order to empty the impurity

How can we label the histogram peaks? t dd -PAM (t pd =0.75) 10% hole doping ρ 0, 0 σ = ρ, order-resolved density-matrix: k σ m ρ α, α = αα now diagrams making the impurity doubly occupied belong almost fully to the second peak in our case the p-band is almost full, it can only give electrons second peak has p character ρ, ρ, hybridization events filling the impurity φ i e βh loc......c α1(τ1) φ i i=0

Simple way of getting two peaks? coherent state of the harmonic oscillator a α = α α α =e α2 /2 n=0 α n n! n which n contribute? P (n) = n α 2 = e α2 n! α 2n two components with different strength of the hybridization

Kinetic energy argument

Kinetic energy argument In CT-HYB the kinetic energy can be calculated from the average exp. order Z = D[ψ ψ]e S ( 1)k 0 ( S) k S = hybridization part of the action k! k k = 1 D[ψ ψ]e S 0 k ( 1)k ( S) k = 1 D[ψ ψ]e S ( 1) k 1 0 Z k! Z (k 1)! ( S)k 1 S = S S = β 0 dτ l,σ a lσ k τ µ + ε l integrating out the bath fermions a lσ + V l c σa lσ + V l a lσ c σ S = β 0 β 0 k dτdτ σ k = 1 T E kin S =Tr[F G] c σ(τ)f (τ τ )c σ (τ )

Kinetic energy argument Two components with different mobility? k = 1 T E kin two different screening channels? ongoing study of the spin susceptibility

Second moment What does the second moment of the distribution correspond to? Z = D[ψ ψ]e S ( 1)k 0 ( S) k S = hybridization part of the action k! k k 2 = 1 Z D[ψ ψ]e S 0 k k 2 ( 1)k k! ( S) k = 1 Z D[ψ ψ]e S 0 k k ( 1) k 2 k 1 (k 2)! ( S)k 2 ( S) 2 ( S) 2 connected to a four-point T-product does a susceptibility get large when the distribution becomes bi-modal? see also yesterday s talk by Sergio Ciuchi ongoing project with AG Held supervised by M. Wallerberger and A. Toschi

Conclusions plain vanilla DMFT LDA+DMFT H(k) in wannier90-format long-range ordered magnetic solutions enlarged basis ( PAM /dp-models) and DMFT+Hartree w2dynamics various flavors of non-equivalent atoms/layers/ real-space schemes ( nanodmft and nanodγa ) talk by Nico about future developments and talk by Markus about two-particle results