Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates)

Similar documents
Axioms of Adaptivity

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

Numerische Mathematik

Five Recent Trends in Computational PDEs

Lecture Note III: Least-Squares Method

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters

Workshop on CENTRAL Trends in PDEs Vienna, November 12-13, 2015

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Traces and Duality Lemma

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

A posteriori error estimates for non conforming approximation of eigenvalue problems

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

Adaptive Boundary Element Methods Part 1: Newest Vertex Bisection. Dirk Praetorius

Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD

arxiv: v1 [math.na] 19 Dec 2017

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

A Mixed Nonconforming Finite Element for Linear Elasticity

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

Discontinuous Petrov-Galerkin Methods

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Rate optimal adaptive FEM with inexact solver for strongly monotone operators

Numerical Solutions to Partial Differential Equations

b i (x) u + c(x)u = f in Ω,

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

Convergence and optimality of an adaptive FEM for controlling L 2 errors

c 2007 Society for Industrial and Applied Mathematics

arxiv: v2 [math.na] 23 Apr 2016

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

Numerical Solutions to Partial Differential Equations

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma

arxiv: v1 [math.na] 27 Jan 2016

NUMERICAL EXPERIMENTS FOR THE ARNOLD WINTHER MIXED FINITE ELEMENTS FOR THE STOKES PROBLEM

An optimal adaptive finite element method. Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam

Axioms of adaptivity. ASC Report No. 38/2013. C. Carstensen, M. Feischl, M. Page, D. Praetorius

Introduction to finite element exterior calculus

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Numerische Mathematik

A Multigrid Method for Two Dimensional Maxwell Interface Problems

Spline Element Method for Partial Differential Equations

SZEGÖ ASYMPTOTICS OF EXTREMAL POLYNOMIALS ON THE SEGMENT [ 1, +1]: THE CASE OF A MEASURE WITH FINITE DISCRETE PART

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

Medius analysis and comparison results for first-order finite element methods in linear elasticity

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM

On the p-laplacian and p-fluids

AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Numerische Mathematik

A posteriori error estimates applied to flow in a channel with corners

ETNA Kent State University

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

Institut für Mathematik

Finite Element Methods for Maxwell Equations

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ.

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

Math 328 Course Notes

AposteriorierrorestimatesinFEEC for the de Rham complex

A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems

Numerical Solutions to Partial Differential Equations

A posteriori error estimates in FEEC for the de Rham complex

Solutions of Selected Problems

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

ON SINGULAR PERTURBATION OF THE STOKES PROBLEM

Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives

Besov regularity for operator equations on patchwise smooth manifolds

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

DISCRETE EXTENSION OPERATORS FOR MIXED FINITE ELEMENT SPACES ON LOCALLY REFINED MESHES

Symmetry-Free, p-robust Equilibrated Error Indication for the hp-version of the FEM in Nearly Incompressible Linear Elasticity

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

Guaranteed Velocity Error Control for the Pseudostress Approximation of the Stokes Equations

SECOND-ORDER FULLY DISCRETIZED PROJECTION METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A u + b u + cu = f in Ω, (1.1)

Math 497 R1 Winter 2018 Navier-Stokes Regularity

An a posteriori error estimator for the weak Galerkin least-squares finite-element method

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

Existence and uniqueness of the weak solution for a contact problem

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1

A NONCONFORMING PENALTY METHOD FOR A TWO DIMENSIONAL CURL-CURL PROBLEM

IMPLEMENTATION OF FUNCTIONAL-TYPE A POSTERIORI ERROR ESTIMATES FOR LINEAR PROBLEMS IN SOLID MECHANICS. Maksim Frolov

A Locking-Free MHM Method for Elasticity

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers.

A Posteriori Existence in Adaptive Computations

MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS

A UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Math 209B Homework 2

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

Transcription:

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and Computational Mathematics Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 1 / 32

Contents L2 1 Reduction Property 2 Plain Convergence 3 Linear Convergence 4 Quasimonotonicity 5 Comparison Lemma 6 Repetition on Optimal Rates 7 Separate Marking 8 Alternative Adaptive LS FEM 4 Laplace Open-Access Reference: C-Feischl-Page-Praetorius: AoA. Comp Math Appl 67 (2014) 1195 1253 Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 2 / 32

Reduction Property Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 3 / 32

With Dörfler Marking (A1)+(A2)=(A12) Abbreviate T := T l and T := T l+1 in (A1)-(A2) with η(k) := η l (K) for K T resp. η(t ) := η l+1 (T ) for T T and δ := δ(t, T ). Then (A1)-(A2) read η( T T ) η(t T ) Λ 1 δ η( T \ T ) ϱ 2 η(t \ T ) + Λ 2 δ Underlying sum convention η 2 (M) := M M η2 (M) Since marked T are refined, Dörfler marking leads to Θη 2 (T ) η 2 (T \ T ) Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 4 / 32

Weighted geometric-arithmetic mean inequality for a, b R reads (a + b) 2 (1 + λ) a 2 + (1 + 1/λ) b 2 for all λ > 0 (with equality if a, b > 0 for the minimizing choice of λ) Application to (A1) shows for any λ > 0 η 2 ( T T ) (1 + λ)η 2 (T T ) + (1 + 1/λ)Λ 2 1δ 2 Application to (A2) shows for any µ > 0 η 2 ( T \ T ) ϱ 2 2(1 + µ)η 2 (T \ T ) + (1 + 1/µ)Λ 2 2 δ 2 The sum gives η 2 ( T ) = η 2 ( T T ) + η 2 ( T \ T ) on LHS Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 5 / 32

Hence η 2 ( T ) (1 + λ)η 2 (T T ) + ϱ 2 2(1 + µ)η 2 (T \ T ) + ( (1 + 1/λ)Λ 2 1 + (1 + 1/µ)Λ 2 ) 2 2 δ }{{} Λ 12 Recall 0 < Θ 1 and 0 < ϱ 2 < 1 so there exist 0 < µ < ϱ 2 2 1 and 0 < λ < Θ 1 (1 + µ)ϱ2 2 1 Θ Theorem (A12) (A1)-(A2) and Dörfler marking imply η 2 ( T ) ϱ 12 η 2 (T ) + Λ 12 δ 2 with ϱ 12 < 1 and Λ 12 < for any such choice of λ, µ Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 6 / 32

Proof of (A12) Recall η 2 ( T ) (1 + λ)η 2 (T T ) + ϱ 2 2(1 + µ)η 2 (T \ T ) + Λ 12 δ 2 Recall η 2 (T T ) = η 2 (T ) η 2 (T \ T ) and rewrite η 2 ( T ) Λ 12 δ 2 (1 + λ)η 2 (T T ) + ϱ 2 2(1 + µ)η 2 (T \ T ) ( ) = (1 + λ)η 2 (T ) + ϱ 2 2(1 + µ) (1 + λ) η 2 (T \ T ) Since ϱ 2 2 (1 + µ) < 1 < 1 + λ, the factor in brackets is 0 and Dörfler marking with Θη 2 (T ) η 2 (T \ T ) leads to Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 7 / 32

η 2 ( T ) Λ 12 δ 2 ( ) (1 + λ)η 2 (T ) + ϱ 2 2(1 + µ) (1 + λ) η 2 (T \ T ) ( ) (1 + λ)(1 Θ) + Θϱ 2 2(1 + µ) η 2 (T ) }{{} ϱ 12 The proof concludes with ϱ 12 < 1 iff λ < Θ 1 (1+µ)ϱ2 2 1 Θ calculation) (by a minor NB. λ, µ small reduce ϱ 12 but increase Λ 12 Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 8 / 32

Repeat (A12) Abbreviate T := T l and T := T l+1 in (A1)-(A2) with η(k) := η l (K) for K T resp. η(t ) := η l+1 (T ) for T T and δ := δ(t, T ) =: δ l,l+1. Recall there exist 0 < µ < ϱ 2 2 1 and 0 < λ < Θ 1 (1 + µ)ϱ2 2 1 Θ Theorem (A12) (A1)-(A2) and Dörfler marking imply ηl+1 2 ϱ 12 ηl 2 + Λ 12δl,l+1 2 with ϱ 12 < 1 and Λ 12 < for any such choice of λ, µ Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 9 / 32

Plain Convergence Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 10 / 32

Convergence η k 0 as k Theorem (plain convergence) (A12), (A4), and Λ := (1 + Λ 12 Λ 4 )/(1 ϱ 12 ) < imply ηk 2 Λη2 l for all l N 0. k=l Proof. Recall (A12) as η 2 k+1 ϱ 12η 2 k + Λ 12δ 2 k,k+1. Then l+m k=l l+m+1 ηk 2 k=l η 2 k η2 l + ϱ 12 l+m k=l η 2 k + Λ 12 l+m k=l Recall (A4) k=l δ2 k,k+1 Λ 4ηl 2 for the last term and utilize ϱ 12 < 1 to conclude the proof δ 2 k,k+1 Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 11 / 32

Linear Convergence Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 12 / 32

R-Linear Convergence Uniformly on Each Level Theorem (A12),(A4),Λ, and q := 1 1/Λ < 1 imply ηl+m 2 qm Λ ηl 2 for all l, m N 0. Proof. Plain convergence gives ξl 2 := ηk 2 Λ η2 l < k=l and so Λ 1 ξl 2 η2 l = ξ2 l ξ2 l+1 This proves ξl+1 2 qξ2 l (for each l N 0 ) Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 13 / 32

Recall ξ 2 l+1 qξ2 l for all l N 0 Mathematical induction leads to ξ 2 l+m qm ξ 2 l for all m N 0 This and ξ 2 l := k=l η2 k Λ η2 l show η 2 l+m ξ2 l+m qm ξ 2 l qm Λη 2 l R-linear convergence uniformly on each level implies via a geometric series l 1 k=0 η 1/s k η 1/s l Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 14 / 32

Quasimonotonicity Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 15 / 32

(QM) Estimator Quasimonotonicity Theorem (QM) (A1) (A3) and Λ mon := 1 + Λ 2 1 + Λ2 2 Λ 3 imply η( T ) Λ mon η(t ) for any refinement T of any T in T Proof. For any 0 < λ <, utilize (A1)-(A2) in the decomposition η 2 ( T ) = η 2 ( T T ) + η 2 ( T \T ) Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 16 / 32

η 2 ( T ) = η 2 ( T T ) + η 2 ( T \T ) ( (1 + λ) η 2 (T T ) + η 2 (T \ T ) ) }{{} η 2 (T ) + (1 + 1/λ)(Λ 2 1 + Λ 2 2)δ 2 (A3) reads δ 2 Λ 2 3 η2 (T ) and leads to η 2 ( T ) (1 + λ + (1 + 1/λ)(Λ 2 1 + Λ 2 2)Λ 2 3)η 2 (T ) }{{} Λ 2 mon Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 17 / 32

Comparison Lemma Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 18 / 32

Comparison Lemma Given 0 < κ < 1 and s > 0 with M := sup (N + 1) s min η(t ) < N N 0 T T(N) 0 < θ 0 < 1 l N 0 ˆT l T(T l ) s.t. (a) η( ˆT l ) κη(t l ) (b) κη l T l \ ˆT l s Λ mon M (c) θ 0 η 2 l η2 l (T l \ ˆT l ) Proof. (1) W.l.o.g. η l η(t l ) > 0. Then (QM) implies 0 < η 0 M Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 19 / 32

(2) Choose minimal N l N 0 s.t. (N l + 1) s κη l Λ mon M < N s l 1 (N l 1 because η l Λ 1 mon/m η 0 /M 1) (3) Set T l := T l T for T with T T(N l ) s.t. (N l + 1) s η(t ) M Quasimonotonicity and overlay control lead to (a), η( T l ) Λ mon M(N l + 1) s κη l and T l T l + N l Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 20 / 32

Proof of (b)-(c) in Comparison Lemma (4) Proof of (b). Count triangles to verify T l \ T l T l T l N l < κ 1/s η 1/s l Λ 1/s monm 1/s from from (2) (5) Any T l T(T l ) with (a) allows for (c). Given 0 < µ < κ 2 1, (A1) plus (a) and (A3) imply η 2 l (T l T l ) (1+µ)η 2 ( T l, T l T l ) +(1+1/µ)Λ 2 1δ 2 (T l, T l ) (1 + µ)κ 2 η 2 l + (1 + 1/µ)Λ2 1Λ 2 3η 2 l (T l\ T l ) This and η 2 l = η2 l (T l T l ) + η 2 l (T l\ T l ) lead to (1 (1 + µ)κ 2 ) η 2 l (1 + (1 + 1/µ)Λ2 1Λ 2 3) η 2 l (T l\ T l ) NB. Θ 0 is a quotient that depends onκ and µ. Fix those paramaters. Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 21 / 32

Repetition on Optimal Rates Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 22 / 32

Optimality Analysis at a Glance II R satisfies bulk criterion if θ A θ 0 thus M l R for optimal set M l of marked cells. AFEM utilizes almost minimal M l, whence M l M l R Set M := sup N N0 (1 + N) s min T T(N) η(t ) with (writing κ 1) R M 1/s η 1/s l Recall closure overhead control and combine with aforementioned estimates for l 1 l 1 T l T 0 M k M 1/s k=0 k=0 η 1/s k M 1/s η 1/s l Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 23 / 32

Separate Marking Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 24 / 32

Adaptive Algorithm: SAFEM Input: T 0, 0 < κ, θ A 1, ρ B < 1 l = 0, 1, 2, 3,... Compute η 2 l (K) and µ2 (K) for all K T l if µ 2 l := µ2 (T l ) κη 2 l T l+1 := Dörfler marking(θ A, T l, η 2 l ) else T l+1 := T l data approximation(ρ B µ 2 l, T 0, µ 2 l ) Output: Sequence (T l ), (η l ), (µ l ) abreviate σ 2 l := η2 l + µ2 l Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 25 / 32

Axioms (A1) (A4) Supposeρ 2 <1,Λ k < s.t. T T ˆT T (T ) R T s.t. T \ ˆT R R T \ ˆT η( ˆT, T ˆT ) η(t, T ˆT ) Λ 1 δ(t, ˆT ) (A1) η( ˆT, ˆT \ T ) ρ 2 η(t, T \ ˆT ) + Λ 2 δ(t, ˆT ) (A2) δ 2 (T, ˆT ) Λ 3 ( η 2 (T, R)+µ 2 (T ) ) + Λ 3 η 2 ( ˆT ) (A3) δ 2 (T k, T k+1 ) Λ 4 σl 2 for all l N 0 (A4) k=l Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 26 / 32

Axioms (B1) (B2) Tol > 0 T Tol = data approx(tol, T 0, µ 2 ) T satisfies µ 2 (T Tol ) Tol and T Tol T 0 Λ 5 Tol 1/(2s) (B1) T T, ˆT T(T ) µ 2 ( ˆT ) Λ 6 µ 2 (T ) (B2) (B1) (B2) follow for Approx from subadditivity µ 2 ( ˆT (M)) := µ 2 (T ) Λ 6 µ 2 (M) (SA) K M T ˆT (K) Typical example TSA by Binev and DeVore but also Dörfler marking over sufficient levels could do [C-Rabus 2016] Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 27 / 32

Theorem (C-Rabus 2016) SAFEM leads to optimal convergence rates in total estimators provided (A1)-(A4), (B1)-(B2), 0 < θ A < θ 0 := 1 κλ2 1 Λ 3 1 + Λ 2 1 Λ 3 and κ < 1 ρ A Λ 6 1 plus Quasimonotonicity (e.g. for (Λ 2 1 + Λ2 2 ) Λ 3 < 1) T T ˆT T (T ) σ( ˆT ) Λ 7 σ(t ). Applications to div-lsfem and to MFEM with convergence rates in H(div, Ω) L 2 (Ω) in [C-Rabus 2016] Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 28 / 32

Alternative Adaptive LS FEM 4 Laplace Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 29 / 32

Alternative A Posteriori Error Control Estimator η and data approximation error µ in 2D η 2 (T, K) := (1 Π 0 )p LS 2 L 2 (K) + K 1/2 ( ) [p LS ] E τ E 2 L 2 (E) + [ u LS/ ν E ] E 2 L 2 (E\ Ω) E E(K) µ 2 (K) := f Π 0 f 2 L 2 (K) for K T [C-Park 2015] satisfy discrete reliability (A3) (for k = 0) (Proof with explicit Crouzeix-Raviart and Raviart-Thomas functions, discrete Helmholtz decomposition, mixed intermediate solutions still leaves extra term) Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 30 / 32

References and Further Reading C, M. Feischl, M. Page, D. Praetorius, Axioms of adaptivity, Comput. Math. Appl., 67 (2014), pp. 1195-1253. C, H. Rabus. Axioms of adaptivity with separate marking for data resolution. SIAM J. Numer. Anal. 55(6) (2018) 2644-2665 P. Bringmann, C, G. Starke: An adaptive least-squares FEM for linear elasticity with optimal conv rates, SIAM J. Numer. Anal. 56 (2018) P. Bringmann, C: h-adaptive least-squares FEMs for 2D Stokes eqns of any order with optimal conv rates, Comput. Math. Appl. 74 (2017) P. Bringmann, C: An adaptive least-squares FEM for Stokes eqns with optimal conv rates, Numer. Math. 135 (2017) C, E. J. Park, P. Bringmann: Convergence of natural adaptive least squares FEMs, Numer. Math. 136 (2017) C, E.-J. Park: Convergence and optimality of adaptive least squares FEMs, SIAM J. Numer. Anal. 53 (2015) Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 31 / 32

Prepare yourself for tomorrow Conforming P 1 FEM for Poisson Model Problem (weak form, H0 1(Ω), energy scalar product a(, ) := Ω dx, energy norm) Inverse estimates (for polynomials) Trace inequality (for Sobolev functions) Discrete trace inequality (for polynomials) Shape regularity (for triangles, simplices) Poincaré and Friedrichs inequality (for Sobolev functions) Equivalence of norms in finite dimensional vector spaces Scaling argument (for derivatives of Sobolev functions) Triangle inequality (in normed linear spaces) Cauchy inequality (in Hilbert spaces like L 2 or w.r.t. a(, )) C, F. Hellwig: Constants in Discrete Poincaré and Friedrichs Inequalities and Discrete Quasi-interpolation, CMAM (arxiv:1709.00577), 2017. Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 2 Shanghai 2018 32 / 32