Positive and negative solutions of a boundary value problem for a

Similar documents
Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

LAPLACE TRANSFORMS. 1. Basic transforms

Contraction Mapping Principle Approach to Differential Equations

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Exponential Decay for Nonlinear Damped Equation of Suspended String

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

5.1-The Initial-Value Problems For Ordinary Differential Equations

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Some New Dynamic Inequalities for First Order Linear Dynamic Equations on Time Scales

Citation Abstract and Applied Analysis, 2013, v. 2013, article no

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

Weighted Inequalities for Riemann-Stieltjes Integrals

Mathematics 805 Final Examination Answers

New Inequalities in Fractional Integrals

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

( ) ( ) ( ) ( ) ( ) ( y )

Procedia Computer Science

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

0 for t < 0 1 for t > 0

graph of unit step function t

How to prove the Riemann Hypothesis

e t dt e t dt = lim e t dt T (1 e T ) = 1

Research Article An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

Stability in Distribution for Backward Uncertain Differential Equation

Refinements to Hadamard s Inequality for Log-Convex Functions

CSC 373: Algorithm Design and Analysis Lecture 9

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

4.8 Improper Integrals

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

FM Applications of Integration 1.Centroid of Area

EECE 301 Signals & Systems Prof. Mark Fowler

FRACTIONAL-order differential equations (FDEs) are

Existence of positive solutions for fractional q-difference. equations involving integral boundary conditions with p- Laplacian operator

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces

Yan Sun * 1 Introduction

Fractional Calculus. Connor Wiegand. 6 th June 2017

1. Introduction. 1 b b

FUZZY n-inner PRODUCT SPACE

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

MTH 146 Class 11 Notes

Fractional operators with exponential kernels and a Lyapunov type inequality

2k 1. . And when n is odd number, ) The conclusion is when n is even number, an. ( 1) ( 2 1) ( k 0,1,2 L )

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control

A new model for solving fuzzy linear fractional programming problem with ranking function

Solving Evacuation Problems Efficiently. Earliest Arrival Flows with Multiple Sources

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS

NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model

Introduction to SLE Lecture Notes

REAL ANALYSIS I HOMEWORK 3. Chapter 1

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

Fractional Ornstein-Uhlenbeck Bridge

Network Flows: Introduction & Maximum Flow

Introduction to Congestion Games

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES

On Tempered and Substantial Fractional Calculus

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła

The Concepts and Applications of Fractional Order Differential Calculus in Modelling of Viscoelastic Systems: A primer

Example on p. 157

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

1 Motivation and Basic Definitions

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Chapter Direct Method of Interpolation

Main Reference: Sections in CLRS.

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

T-Rough Fuzzy Subgroups of Groups

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

Explicit form of global solution to stochastic logistic differential equation and related topics

TEACHING STUDENTS TO PROVE BY USING ONLINE HOMEWORK Buma Abramovitz 1, Miryam Berezina 1, Abraham Berman 2

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

Transcription:

Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference euion Yizhu Wng Chengmin Hou *,2,( Deprmen of Mhemic, Ynin Univeriy, Ynji, 332, P.R. Chin) ABSTRACT : In hi work, we udy oundry vlue prolem for frcionl, -difference euion. By uing he monoone ierive echniue nd lower-upper oluion mehod, we ge he exience of poiive or negive oluion under he nonliner erm i locl coninuiy nd locl monooniciy. The reul how h we cn conruc wo ierive euence for pproximing he oluion. KEYWORDS: frcionl, -difference euion; poiive nd negive oluion; lower nd upper oluion; ierive mehod; I. INTRODUCTION A unum clculu uiue he clicl derivive y difference operor, which llow one o del wih e of non-differenile funcion. There re mny differen ype of unum difference operor uch h- clculu, -clculu, Hhn clculu. Thee operor re lo found in mny pplicion of mhemicl re uch orhogonl polynomil, cominoric nd he clculu of vriion. Hhn [] inroduced hi difference operor D, f ( + ) f ( ) f ( ), ( ) + D, follow:, where f i rel funcion, nd (,) nd re rel fixed numer. Mlinowk nd Torre [2,3] inroduced he Hhn umum vriionl clculu, while Mlinowk nd Mrin [4] inveiged he generlized rnverliy condiion for he Hhn unum vriionl clculu. Recenly, Hmz e l. [5,6] udied he heory of liner Hhn difference euion, nd udied he exience nd uniuene reul of he iniil vlue prolem wih Hhn difference euion uing he mehod of ucceive pproximion. Moived y he foremenioned work, we conider he following nonliner oundry vlue prolem for frcionl, -difference euion: D, u( ) + f (, u( )), (, ), u D, u D, u, (.) where (,), 2 3, f :[, ] [, + ), i he frcionl, -derivive of he Riemnn - D, Liouville ype? II. BACKGROUND AND DEFINITIONS To how he min reul of hi work, we give in he following ome ic definiion, lemm nd heorem, which cn e found in [7]. Volume 2 Iue 9 www.ijrem.com 73

Poiive nd negive oluion of oundry vlue Definiion 2. [7] Le I e cloed inervl of uch h,, I. For f : I we define he, -inegrl of f from o y where f ( ) d : f ( ) d f ( ) d,,,, x f ( ) d : ( x( ) ) f ( x [ k] ), x I, k k, +, k wih k ( ) [ k], for k {}, provided h he erie converge x x. Lemm 2.2 [7] Aume f : I e coninuou. Define x F( x) : f ( Then ) d, F. i coninuou. Fuhermore, D, F( x) exi for every nd xid Converely,, F( x) f ( x). for ll, I. D F x d f f,, Lemm 2.3 [7] For, For ny poiive ineger k,, ( + ) [ ],, ().,,, ( k+ ) [ k]!. Definiion 2.4 [7] Le Riemnn-Liouville ype i given y nd f e funcion defined on [,]. The Hhn frcionl inegrion of ( I f )( ) f ( ), ( I f )( ) ( ) f d,, [, ]. Definiion 2.5 [7] The frcionl, -derivive of he Riemnn -Liouville ype i nd ( ),, where denoe he mlle ineger greer or eul o. Theorem 2.6 [7] Le ( N, N]. Then for ome conn c, i,2,, N, he following euliy hold: ( D f )( ) ( D I f )( ),,,,, ( I D f )( x) f ( x) + c ( x ) + c ( x ) + + c ( x ). ( ) ( 2) ( N ),, 2 N i Volume 2 Iue 9 www.ijrem.com 74

Poiive nd negive oluion of oundry vlue Lemm 2.7 [8] Aume h X i Bnch pce nd K i norml cone in X, T :[ u, v] X i compleely coninuou increing operor which ifie u Tu, Tv Then v. T h miniml fixed poin u * * nd mximl fixed poin v wih u lim T n u, v u u v * v. * * lim T n v, n In ddiion, n where { Tu} n i n increing euence, { Tv n } n i decreing euence. III. EXISTENCE OF, -FRACTIONAL POSITIVE SOLUTIONS FOR PROBLEM Lemm 3. Aume g C[, ], hen he following oundry vlue prolem: D, u( ) + g( ), (, ), u D, u D, u, h uniue oluion * n where u( ) G(, ) g d,, ( ) ( ) ( 2) ( ) ( ) ( ), ( 2) ( ) G(, ), ( ) ( ) ( 2) ( ) ( ), ( 2). Proof In view of Theorem 2.6, Since we hve c c From he oundry condiion we ge Hence u( ) ( ) g d + c ( x ) + c ( x ), ( ) ( ) ( 2), 2 u D u, D, u, + c x ( 3), 3 2 3. c ( ) g d. ( 2) ( 2), ( ) u( ) ( ) g d + ( ) ( ), ( 2) ( ) ( ) g d ( 2), Volume 2 Iue 9 www.ijrem.com 75

Poiive nd negive oluion of oundry vlue ( ) ( ) ( 2) ( ) ( ) ( ) ( 2) g d, ( ) ( ) ( 2) + ( ) ( 2) g d, (, ). G g d, Lemm 3.2 The funcion G(, ) h he following properie: () () G(, ), G(, ) G(, ), ( ) G(, ) G(, ), ( ) ( 2) ( ),., ; Remrk 3.3 The funcion G(, ) h ome oher properie: () ( ) G(, ) ( ) ( ), ( ) ( 2) ( ) ( 2) ( ),. (2) According o he propery of eing non-decreing of funcion ( ) ( )( ) ( 2) i+ i+ 2 ( 2) i+ i ( ) ( )( ) on nd non-increing of ( ) 2 ( 2) on, We cn oin he following ineuliie: () For 2, we ge G(, ) G(, ) 2 ( ) ( ) ( ) ( ) ( ) ( ) 2 ( 2) ( 2) ( ) ( ) ( 2) ( 2) ( 2) ( ) ( ) ( ) ( 2) ( ) ( ) [( 2 ) ( ) ]. ( ) ( ) 2 () For, 2 we ge G(, ) G(, ) 2 Volume 2 Iue 9 www.ijrem.com 76

Poiive nd negive oluion of oundry vlue ( ) ( ) 2 ( 2) ( ) ( ) ( ( 2) 2 ) ( 2) ( ) ( ) ( ) ( ) ( 2) ( ) ( ) ( ) 2 2 (c) For ( ) ( ) ( 2) ( ) ( 2), we ge 2 ( ) ( ) ( ) [( 2 ) ( ) ( 2 ) + ]. G(, ) G(, ) 2 ( ) ( ) 2 ( 2) ( ) ( ) ( ( 2) 2 ) ( ) ( ) ( 2) ( ) ( ) ( ( 2) ) ( ) ( 2) ( ) ( ) ( ) ( 2) ( ) ( ) 2 + ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( 2 ) ( ) + ( 2 ) ( ). (3) G(, ), for (, ) (, ) (, ). Le X C[, ], he Bnch pce of ll coninuou funcion on [,], wih norm u mx{ u( ) : [, ]}. In our coniderion, we need he ndrd cone K X y K { u [, ]: u( ), }. I i cler h he cone K i norml. Theorem 3.4 Aume h ( F ) here exi rel numer d nd g L [, ], uch h ( i ) f :[, ] [, d] [, +) i coninuou, f (, u) g( ) for (, u) [, ] [, d] nd f (, u) f (, v) for, u v d; Volume 2 Iue 9 www.ijrem.com 77

( i 2) he following ineuliy hold: ( ) ( ) f, d d d. ( ) ( 2) ( 2), ( F 2) here exi c (, d) uch h Poiive nd negive oluion of oundry vlue ( ) ( ) G(, ), f c d ( 2), c. ( ) Then he prolem (.) h wo poiive oluion u, v D, where In ddiion, le ( ) ( ) D { u C[, ] c u( ) d, [, ]}. ( ) ( ) ( ) u ( ) c, ( ) ( 2) ( ) ( ) ( ) ( 2) ( 2) ( ) v d ( ) () ( 2) ( ) nd conruc he following euence: n+ (, ) (, ) n,, n+ n, u G f u d v G(, ) f (, v ) d, n,,2,, one h lim un u,lim vn v. n n Proof From he non-negivene nd coninuiy of G nd f, we cn define n operor T : C[, ] C[, ] y,. Tu( ) G(, ) f (, u) d, From Lemm 3., we cn ee h u i he oluion of prolem (.) if nd only if u i he fixed poin of T. We will how h T h fixed poin in he order inervl [ u, v ]. hve We need o how h T :[ u, v] C[, ] i compleely coninuou operor. For u [ u, v], we ( ) ( ) c u( ) d d, ( ) ( ) Since G(, ) i coninuou. So we only prove T i compc. Le M hen From he hypohei ( F) ( i2) nd g d,, M +. lemm 3.2, we ge ( ) ( ) ( 2) ( 2) Tu( ) mx G(, ) f (, u) d,. mx G (, ( )) f (, u ( )) d, M ( ) g d ( ). ( ) ( ), Volume 2 Iue 9 www.ijrem.com 78

Poiive nd negive oluion of oundry vlue Thi how h he e T ([ u, v ]) i uniform ounded in C[, ]. Afer h, for given, 2 [, ] wih, 2 nd u [ u, v], we oin Tu ( ) Tu ( ) G(, ) G(, ) f (, u) d 2 2, mx G(, ) G(, ) g d 2, M mx G(, ) G(, ). 2 In view of Remrk 3.3(2), one h Tu( ) Tu2( ),. 2 So we clim h he e T ([ u, v ]) i euiconinuou in C[, ]. By men of he Arzel-Acoli heorem, T :[ u, v ] C[, ] i compleely operor. By he hypohei ( F) ( i), T i n increing operor. From ( F),( F 2) nd Lemm 3.2, for ny [, ], one cn ee h Tu ( ) G(, ) f (, u ) d, ( ) ( ) G(, ), f c d ( 2), ( ) ( ) ( ) ( ) ( ) G(, ), ( 2) f c d ( 2), ( ) ( ) ( ) c u() ( ) ( ) ( 2) nd Tv ( ) G(, ) f (, v ) d, ( ) ( ) G(, ), f d d ( 2), ( ) ( ) ( ) ( ) ( ) ( 2) ( ), ( 2) f d d ( 2), ( ) ( ) d v ( ). ( ) ( ) ( 2) Hence, we ge Tu u, Tv v. We conruc he following euence: n+ (, ) (, ) n,, n+ n, u G f u d v G(, ) f (, v ) d, Volume 2 Iue 9 www.ijrem.com 79

Poiive nd negive oluion of oundry vlue n,, 2,. From he monooniciy of T, we hve un+ un, vn+ vn, n,, 2,. By uing Lemm 2.7, we know h he operor T h wo poiive oluion u, v C[, ] wih ( ) ( ) ( ) ( ) h i, c u ( ) v ( ) d,. In ddiion, lim un u,lim vn v. ( 2) ( 2) n n ( ) ( ) Theorem 3.5 Aume h u u v v * *, ( F 3) here exi rel numer d nd g L [, ], uch h ( i 3) f :[, ] [, d] i coninuou, f (, u) g( ) for (, u) [, ] [, d] nd f (, u) f (, v) for [, ], u v d; ( i 4) he following ineuliy hold: ( ) ( 2) ( ) mx{,,} ( 2), ( F 4) here exi c [, d] uch h ( ) f d d ( ) ( ) + G(, ) min{,,} f d d ( 2), d. ( ) ( ) ( ) G(, )mx{,,} f c d ( 2), ( ) ( ) ( ) ( 2) + ( ) min{,,} f c d ( 2), c. ( ) Then he prolem (.) h wo poiive oluion u, v D, where ( ) ( ) D { u C[, ] c u( ) d, [, ]}. ( ) ( ) ( ) ( ) ( 2) ( 2) In ddiion, le ( ) u ( ) c, ( ) ( 2) ( ) ( ) v d ( ) () ( 2) ( ) nd conruc he following euence: n+ (, ) (, ) n,, n+ n, u G f u d v G(, ) f (, v ) d, n,,2,, one h lim un u,lim vn v. n n Proof Conider he me operor T : C[, ] C[, ] defined in he proof of Theorem 3.4:, [, ]. Tu( ) G(, ) f (, u) d, Volume 2 Iue 9 www.ijrem.com 8

We lo how h T h fixed poin in he order inervl [ u, v ]. Poiive nd negive oluion of oundry vlue Similr o he proof of Theorem 3.4, T : C[, ] C[, ] i compleely coninuou operor. From he hypohei ( F3) ( i3), T i n increing operor. Furher, y uing he condiion ( F3),( F 4), Remrk 3.3 nd Lemm 3.2, for ny [, ], one oin Tu ( ) G(, ) f (, u ) d, ( ) ( ) G(, ) mx{,,} f c d ( 2), ( ) ( ) ( ) + G(, )min{,,} f c d ( 2), ( ) ( ) ( ) ( ) ( ) G(, ) mx{,,} ( 2) f c d ( 2), ( ) ( ) ( ) ( ) ( 2) + ( ) min{,,} f c d ( 2), ( ) ( ) c u() ( ) ( ) ( 2) nd Tv ( ) G(, ) f (, v ) d, ( ) ( ) G(, )mx{,,} f d d ( 2), ( ) ( ) ( ) + G(, )min{,,} f d d ( 2), ( ) ( ) d v ( ). ( ) ( ) ( 2) Hence, we ge Tu u, Tv v. We conruc he following euence: n+ (, ) (, ) n,, n+ n, u G f u d v G(, ) f (, v ) d, n,, 2,. According o he monooniciy of T, we ge u u, v v, n,, 2,. n+ n n+ n Volume 2 Iue 9 www.ijrem.com 8

Poiive nd negive oluion of oundry vlue By uing Lemm 2.7, we know h he operor T h wo poiive oluion u u v v * *, h i, ( ) ( ) c u ( ) v ( ) d d, ( ) ( ) ( ) ( ) ( 2) ( 2) u, v C[, ] wih. In ddiion, lim un u,lim vn v. n n By uing he me proof Theorem 3.5, we cn eily oin he following concluion. Theorem 3.6 Aume h ( F 5) here exi rel numer c nd g L [, ], uch h ( i 5) f :[, ] [ c, ] i coninuou, f (, u) g( ) for (, u) [, ] [ c, ] nd f (, u) f (, v) for [, ], c u v. In ddiion, here exi d ( c, ) uch h ( F ) ( i ) nd ( F 4) in Theorem 3.5 re lo ified. Then 3 4 he prolem (.) h wo negive oluion u, v D, where ( ) ( ) D { u C[, ] c u( ) d, [, ]} ( ) ( ) ( ) ( ) ( 2) ( 2) Le ( ) u ( ) c, ( ) ( 2) ( ) ( ) v d ( ) () ( 2) ( ) nd we conruc he following euence: n+ (, ) (, ) n,, n+ n, u G f u d v G(, ) f (, v ) d, n,,2,, we cn oin lim un u,lim vn v. n n REFERENCES [] Hhn,W: Üer Orhogonlpolynome, die -Differenzenlgleichungen genügen. Mh. Nchr. 2, 4-34(949) [2] Mlinowk, AB, Torre, DFM: The Hhn unum vriionl clculu. J. Opim. Theory Appl. 47, 49-442(2) [3] Mlinowk, AB, Torre, DFM: Qunum Vriionl Clculu. Springer Berlin (24) [4] Mlinowk, AB, Mrin, N: Generlized rnverliy condiion for he Hhn unum vriionl clculu. Opimizion 62(3),323-344(23) [5] Hmz, AE, Ahmed, SM: Theory of liner Hhn difference euion. J. Adv. Mh. 4(2), 44-46(23) [6] Hmz, AE, Ahmed, SM: Exience nd uniuene of oluion of Hhn difference euion. Adv. Differ. Eu. 23, 36(23) [7] Yizhu Wng, Yiding Liu, Chengmin Hou: New concep of frcionl Hhn, -derivive of Riemnn-Liouville ype nd Cpuo ype nd pplicion. Adv. Differ. Eu. 292(28) Volume 2 Iue 9 www.ijrem.com 82

Poiive nd negive oluion of oundry vlue [8] Guo, D, Lkhmiknhm, V: Nonliner Prolem in Arc Cone. Acdemic Pre, New York(988) Yizhu Wng, Poiive nd negive oluion of oundry vlue prolem for frcionl - difference euion. Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM),2(9), 73-82. Rerieved Sepemer 2, 28, from www.ijrem.com. Volume 2 Iue 9 www.ijrem.com 83