Andromeda in all colours

Similar documents
Dust radiative transfer modelling. Maarten Baes

The relation between cold dust and star formation in nearby galaxies

Dust in dwarf galaxies: The case of NGC 4214

Multi-wavelength analysis of Hickson Compact Groups of Galaxies.

Geometrically Thick Dust Layer in Edge-on Galaxies

The gas and dust properties of NGC 891 with Herschel

Herschel Virgo Cluster Survey (HeViCS) Jonathan Davies for the HeViCS consortium

Star Formation Indicators

arxiv: v1 [astro-ph.ga] 27 Sep 2016

X-ray emission from star-forming galaxies

Disk Building Processes in the local Massive HI LIRG HIZOA J A prototype for disk galaxies at z=1?

SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03

Gas and Star Formation in the Circinus Galaxy

Radia-ve transfer and the TRUST benchmarks. Maarten Baes

68 Star Formation Laws in LITTLE THINGS Dwarfs: The case of DDO133 and DDO168. Dana Ficut-Vicas

THE LAST SURVEY OF THE OLD WSRT: TOOLS AND RESULTS FOR THE FUTURE HI ABSORPTION SURVEYS

Dust processing of radiation in galaxies

Observing Galaxy Evolution in the Stormy Environment of Shapley Supercluster

Dusty star-forming galaxies at high redshift (part 5)

Polycyclic Aromatic Hydrocarbon from the Magellanic Clouds

Energy Sources of the Far IR Emission of M33

How to measure star formation rates in galaxies?

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings

RADIATIVE TANSFER MODELING OF AGN DUSTY TORUS AS CLUMPY TWO-PHASE MEDIUM

Ram Pressure Stripping in NGC 4330

FIRSED 2013: Nearby Galaxies

Sunrise: Patrik Jonsson. Panchromatic SED Models of Simulated Galaxies. Lecture 2: Working with Sunrise. Harvard-Smithsonian Center for Astrophysics

Panchromatic radiative transfer modelling of stars and dust in the Sombrero galaxy

STAR FORMATION ALONG A CLUSTER-FEEDING FILAMENT

STAR FORMATION RATES observational overview. Ulrike Kuchner

arxiv: v1 [astro-ph.co] 18 May 2010

Stars, Galaxies & the Universe Lecture Outline

The star formation history of Virgo spiral galaxies

The role of cold gas in the chemical evolution of nearby galaxies

Spatially resolved physical conditions of molecular gas: a zoom-in from circumnuclear region of M83 to Carina nebula

Components of Galaxies Gas The Importance of Gas

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Star forming galaxies at high redshift: news from Herschel

Jens Melinder. With financial support from CNES/CNRS convention #

The Spitzer Infrared Nearby Galaxies Survey: A Review

Dust. The four letter word in astrophysics. Interstellar Emission

The death throes of massive stars

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Stellar Populations: Resolved vs. unresolved

Density. Red. Low high. Blue. Cluster galaxy population: passive and red Hogg et al. 2004

Herschel/SPIRE FTS View of M82 Probing the molecular ISM in M82 starburst

Chris Pearson: RAL Space. Chris Pearson: April

Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium:

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

The Gas Star Cycle in Nearby Early Types: UV, Optical, CO, HI

Searching for the dominant mode of galaxy growth! from deep extragalactic Herschel surveys! D.Elbaz (CEA Saclay)

The Herschel Multi-tiered Extragalactic Survey (HerMES) The Evolution of the FIR/SMM Luminosity Function and of the Cosmic SFRD

Star formation history in high redshift radio galaxies

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts

3D Spectroscopy to Dissect Galaxies Down to Their Central Supermassive Black Holes. Kambiz Fathi. Stockholm University, Sweden

Samuel Boissier, Laboratoire d'astrophysique de Marseille

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4

A TALE OF TWO MONSTERS: EMBEDDED AGN IN NGC6418 AND IRAS

Galactic Observations of Terahertz C+ (GOT C+): CII Detection of Hidden H2 in the ISM

Physics 224 The Interstellar Medium

NEARBY GALAXIES AND ALMA

The GALEX Ultraviolet Virgo Cluster Survey (GUViCS): A Unified Picture of Galaxy EvoluCon

Fine-structure line diagnostics of the SFR and ISM conditions

High density tracers of molecular gas in earlytype

Beyond the Visible -- Exploring the Infrared Universe

SED models of AGN. R. Siebenmorgen and A. Efstathiou

arxiv: v1 [astro-ph.ga] 1 Feb 2015

The Galaxy Evolution Explorer. Michael Rich, UCLA. Samir Salim Ryan Mallery

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Spectral Energy Distributions as probes of star formation in the distant Universe

Remarkable Disk and Off Nuclear Starburst Ac8vity in the Tadpole Galaxy as Revealed by the Spitzer Space Telescope

Halo Gas Velocities Using Multi-slit Spectroscopy

Low NHI science & HALOGAS

Interstellar Dust and Extinction

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

Lyα-Emitting Galaxies at z=3.1: L* Progenitors Experiencing Rapid Star Formation

The Interstellar Medium in Galaxies: SOFIA Science

Margherita Talia 2015 A&A, 582, 80 ELG2017. University of Bologna. m g 1

Stellar Populations in the Galaxy

Astrophysical Quantities

An analogy. "Galaxies" can be compared to "cities" What would you like to know about cities? What would you need to be able to answer these questions?

Spatially-Resolved Molecular Gas, Dust and Star Formation in Early-Types

AGN winds and outflows

Lecture 28: Spiral Galaxies Readings: Section 25-4, 25-5, and 26-3

20x increase from z = 0 to 2!

Introduction and Motivation

The evolution of the Galaxy Stellar Mass Function:

Cosmological simulations of our Universe Debora Sijacki IoA & KICC Cambridge

Extinction law variations and dust excitation in the spiral galaxy NGC 300

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain)

The ALMA z=4 Survey (AR4S)

arxiv: v1 [astro-ph.co] 10 Apr 2013

arxiv: v1 [astro-ph.ga] 5 Sep 2014

Our View of the Milky Way. 23. The Milky Way Galaxy

Bursty stellar populations and AGN in bulges

Infrared Observations of the Spiral Galaxy NGC 891. Queen s University

Probing the Chemistry of Luminous IR Galaxies

Transcription:

Andromeda in all colours Sébastien Viaene and the HELGA team: J. Fritz, M. Baes, G.J. Bendo, J.A.D.L. Blommaert, M. Boquien, A. Boselli, L. Ciesla, L. Cortese, I. De Looze, W.K. Gear, G. Gentile, T.M. Hughes, T. Jarrett, O.L. Karczewski, M.W.L. Smith, L. Spinoglio, A. Tamm, E. Tempel, D. Thilker, J. Verstappen

Why we like M31: Large galaxy (>10 10 M ) Nearby (< 1 Mpc) Properties of ETG Properties of LTG Signs of a troubled past

Outline A vast dataset SED fitting and dust scaling relations Radiative Transfer Simulations Towards a complete model of M31

Herschel Exploitation of Local Galaxy Andromeda HI + optical Thilker et al. (2004)

Herschel Exploitation of Local Galaxy Andromeda PACS 160 µm Fritz et al. (2012)

HELGA: Dataset Modelling the panchromatic SED of M31 100 µm 160 µm 250 µm 350 µm 500 µm

HELGA: Herschel maps Cold dust emission

HELGA: Herschel maps Cold dust emission

HELGA: FIR maps MIPS 70 µm MIPS 24 µm WISE 22 µm K. Gordon, T. Jarrett

HELGA: FIR maps Warm dust emission

HELGA: FIR maps Warm dust emission

HELGA: MIR maps WISE 12 µm IRAC 8 µm IRAC 5.8 µm WISE 3.3 µm T. Jarret, P. Barmby

HELGA: MIR maps Hot dust / PAH + stellar emission

HELGA: MIR maps Hot dust / PAH + stellar emission

HELGA: Optical/UV Composite gri (SDSS) E. Tempel GALEX NUV D. Thilker

HELGA: Optical/UV Stellar emission

HELGA: Optical/UV Stellar emission (unattenuated)

HELGA: Optical/UV Stellar emission (attenuated)

HELGA: Zooming in Pixel-by-pixel SED fitting Masking foreground stars Convolution to SPIRE 500 μm beam Same pixel grid Working resolution: 36 -> 140 pc

Resulting Images NUV 500 µm

Resulting Images NUV 500 µm

Resulting Images NUV 500 µm 22 436 independent pixels!

MAGPHYS: SED fitting Multi-wavelength Analysis of Galaxy PHYSical properties E. da Cunha et al. 2008 Bayesian SED fits 75000 theoretical SEDs Construct Probability Density Functions (PDFs)

M31: Main Regions log( L /L ) log( L /L ) 8 7 6 5 4 0.5 0.0 0.5 7 6 5 4 Bulge pixel 2 = 4.15 Ring pixel 2 = 2.44 0.5 0.0 0.5 10 1 10 0 10 1 (µm) 10 2 10 3 Inner Disk pixel 2 = 2.21 Outer Disk pixel 2 = 0.78 10 1 10 0 10 1 10 2 10 3 (µm)

0.4 0.2 0 0.2 0.4 0.4 0.2 0 0.2 0.4 0.4 0.2 0 0.2 0.4 1.5 1 0.5 0 0.5 1 1.5 L dust Offset from centre (degrees) L 1.5 1 0.5 0 0.5 1 1.5 M dust 1 2 3 4 5 6 7 8 9 10 5 1 2 3 LINEAR 4 5 6 7 8 9 10 3 L Tot C L Tot PAH L 1 2 3 4 5 6 7 8 9 10 5 1 2 3 4 5 6 7 8 9 10 5 TC ISM M? ssfr M31: Parameter maps K 12 14 16 18 20 22 24 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 10 7 SFR M L M

T ISM C M? 0.4 0.2 0 0.2 0.4 0.4 0.2 0 0.2 0.4 0.4 0.2 0 0.2 0.4 ssfr M31: Parameter maps K 12 14 16 18 20 22 24 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 10 7 yr 1 SFR 0.0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 10 10 0.5 2.0 3.5 5.0 6.5 8.0 10 5 V V ISM 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 TW BC f µ K 35 40 45 50 55 60 65 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96 M M yr 1

M31: Local vs Global

M31: Local vs Global

HRS: Dust scaling relations 1 log(mdust/m?) 2 3 4 5 6 7 8 9 10 log(µ? )[M /kpc 2 ] 2 3 4 5 6 NUV-r Cortese et al. 2012

HRS: Dust scaling relations log(mdust/m?) 1 2 3 4 5 Outer disk Ring M31 Inner disk Bulge Outer disk Ring Inner disk M31 Bulge 6 7 8 9 10 log(µ? )[M /kpc 2 ] 2 3 4 5 6 NUV-r

HRS: Dust scaling relations 1 log(mdust/m?) 2 3 4 5 6 7 8 9 10 log(µ? )[M /kpc 2 ] 2 3 4 5 6 NUV-r

HRS: Dust scaling relations 1 log(mdust/m?) 2 3 4 5 6 7 8 9 10 log(µ? )[M /kpc 2 ] 2 3 4 5 6 NUV-r

M31: Dust scaling relations 1 log(mdust/m?) 2 3 4 5 1 log(mdust/m?) 2 3 4 5 6 7 8 9 10 log(µ? )[M / kpc 2 ] 2 3 4 5 6 NUV-r

M31: Dust scaling relations 1 log(mdust/m?) 2 3 4 5 1 log(mdust/m?) 2 3 4 5 6 7 8 9 10 log(µ? )[M / kpc 2 ] 2 3 4 5 6 NUV-r

M31: Dust heating sources

M31: Dust Scaling Relations In Summary Panchromatic, sub-kpc SED modelling is now possible, BUT requires: Special data treatment (masking, convolution,...) Extended parameter space Resolved maps - 140 pc - of stellar and dust properties Sub-kpc regions follow galaxy-galaxy dust scaling relations; local nature of the underlying processes Viaene et al. A&A, 567, A71

The bulge of M31 NUV Hα 8 μm 22 μm 250 μm HI

The bulge of M31 NUV Hα 8 μm Can radiative transfer 22 μm simulations 250 μm bring an answer? HI

Why 3D RT modeling? Panchromatic (UV-mm) 3D RT models Self-consistent study of dust attenuation + dust emission 3D asymmetric geometry of stars & dust Non-local character of dust heating What can we learn from 3D RT models? 3D spatial distribution, clumpiness of stars & dust Dust heating by old/young stars at λ IR Non-locality of dust heating Grain composition/size distribution/properties De Looze+2012a

The dust radiative transfer equation Simulateously solved 6D problem in space: propagation of photons across the domain in direction: scattering couples the intensity in all directions in wavelength: absorption/re-emission changes wavelength

SKIRT Stellar Kinematics Including Radiative Transfer 3D continuum Monte Carlo C++ code in OOP-fashion in QT framework (Camps & Baes 2015) Parallel for shared and distributed memory systems Peeling-off technique, continuous absorption forced scattering, smart detectors,... A variety of geometries (stellar, dust), different dust properties, grid structures,... Smooth and clumpy models Mono-, oligo- and panchromatic mode LTE and NLTE http://www.skirt.ugent.be

Forward Radiative Transfer Source Sink Source

Inverse Radiative Transfer

Inverse RT: FitSKIRT Optimization using genetic algorithms C++, OOP, QT framework Stellar emission (~ U to K-band) Multiple geometries (mainly edge-on spirals) Shared/Distributed memory parallelization Handles MC noise/ degeneracies

Monochromatic fitting

Oligochromatic fitting

Advanced dust grids Octree grids Saftly+2013

Advanced dust grids Octree grids kd-tree grids Saftly+2013

Advanced dust grids Octree grids kd-tree grids Voronoi grids Saftly+2013 Camps+2013

Small scale structure ISM filaments Circumbinary dust Star forming region AGN torus

Simulating simulated galaxies

Simulating simulated galaxies Saftly et al. 2014

Almost face-on (i 20 ) D 8.4 Mpc Huge dataset (FUV - 500 micron) Complex geometry Enables the construction of a highresolution multi-wavelength RT model

RT model reconstruction 3 main RT model components: Bulge: old stars (no dust) Thick disk: old stars Thin disk: dust (h z,d = 1/2*h z, ) + (non)ionizing young stars

3D geometry Old stars: 2D geometry (x-y plane) 3D geometry (add z): exp(- z /h z ), h z = 450 pc IRAC 3.6 micron Disc Bulge

3D geometry Young stars: 2D geometry (x-y plane) 3D geometry (add z): exp(- z /h z ), h z = 100 pc 10-100 Myr < 10 Myr non-ionizing: FUV ionizing: Hα+24 micron

3D geometry Dust: 2D geometry (x-y plane) A FUV map: FUV-H to derive calibration coefficients 3D geometry (add z): exp(- z /h z ), h z = 225 pc

Model results Global SED!!

!! Spatially resolved maps Model results

Model results!! Colour maps Model&has&too&warm&colours in&center!

Model results Model deviations up to 50% spatial variation in ages/size of star clusters e.g. younger stars in outer regions due to interaction with NGC 5195 Relative grain abundance variations (PAH, VSG) e.g. PAH destruction in hard RF, grain shattering due to shocks) More diffuse dust component with large h z,d Vlahakis+2013 R![kpc] R![kpc] Calzetti+2005

Dust heating analysis

Dust heating analysis Global TIR emission: 63% by young stars 37% by old stars

Dust heating analysis Galaxy with M 10 10 M F TIR,young = 100% for SFR 2.0 M /yr F TIR,young = 50% for SFR = 0.5 M /yr Caution to link TIR to SF in non-starburst galaxies!

M31: RT model? Working plan: Bulge-disk decomposition

Tempel et al. 2010 M31: RT model?

M31: RT model? Working plan: Bulge-disk decomposition Prepare data products and first run Iteratively refine model Panchromatic SED fit -> main dust and SF properties.

M31: RT model? Working plan: Bulge-disk decomposition Prepare data products and first run Iteratively refine model Panchromatic SED fit -> main dust and SF properties.

M31: RT model? Working plan: Bulge-disk decomposition Prepare data products and first run Iteratively refine model Panchromatic SED fit -> main dust and SF properties. Full model & dust heating analysis???? Profit!