Spatial trends in synoptic rainfall in southern Australia

Similar documents
Synoptic components of rainfall variability and trends in southeast Australia

Assessing rainfall trends and remote drivers in regional climate change projections: The demanding test case of Tasmania

Interdecadal variation in rainfall patterns in South West of Western Australia

Changes in Southern Hemisphere rainfall, circulation and weather systems

Rainfall declines over Queensland from and links to the Subtropical Ridge and the SAM

On the Remote Drivers of Rainfall Variability in Australia

Water Balance in the Murray-Darling Basin and the recent drought as modelled with WRF

Impact of Zonal Movement of Indian Ocean High Pressure on Winter Precipitation over South East Australia

Impacts of the April 2013 Mean trough over central North America

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013

A Preliminary Climatology of Extratropical Transitions in the Southwest Indian Ocean

24. WHAT CAUSED THE RECORD-BREAKING HEAT ACROSS AUSTRALIA IN OCTOBER 2015?

Highlight: Support for a dry climate increasing.

Effect of anomalous warming in the central Pacific on the Australian monsoon

Fuqin Li, Lynda E. Chambers and Neville Nicholls Bureau of Meteorology Research Centre, Australia

Early May Cut-off low and Mid-Atlantic rains

Weather and Climate Summary and Forecast April 2018 Report

Associations between rainfall variability in the southwest and southeast of Australia and their evolution through time

Synoptic and dynamical analyses of ENSO extreme events over Australia

Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013

Impacts of Climate Change on Autumn North Atlantic Wave Climate

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012

Weather and Climate Summary and Forecast Summer 2017

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013

Weather and Climate Summary and Forecast February 2018 Report

Improving projections of rainfall trends through regional climate modeling and wide-ranging assessment

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017

South Eastern Australian Rainfall in relation to the Mean Meridional Circulation

Characteristics of Storm Tracks in JMA s Seasonal Forecast Model

Review A review of recent climate variability and climate change in southeastern Australia

The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hpa Eddy Geopotential Height

Weather and Climate Summary and Forecast October 2018 Report

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012

Linear and nonlinear statistical analysis of the impact of sub-tropical ridge intensity and position on south-east Australian rainfall

Weather and Climate Summary and Forecast August 2018 Report

The relationship between the decline of Southeastern Australian rainfall and the strengthening of the subtropical ridge

Observed Trends in Wind Speed over the Southern Ocean

Weather and Climate Summary and Forecast March 2018 Report

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP July 26, 2004

29. SEVERE FROSTS IN WESTERN AUSTRALIA IN SEPTEMBER 2016

The continuing decline in South-East Australian rainfall - Update to May 2009

Weather and Climate Summary and Forecast October 2017 Report

Climate Forecast Applications Network (CFAN)

By: J Malherbe, R Kuschke

On the Relationship between Western Maritime Continent Monsoon Rainfall and ENSO during Northern Winter

The Victorian Climate Initiative: VicCI

Weather and Climate Summary and Forecast November 2017 Report

Analysis of meteorological measurements made over three rainy seasons in Sinazongwe District, Zambia.

Weather and Climate Summary and Forecast Summer 2016

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

Fewer large waves projected for eastern Australia due to decreasing storminess

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 9 November 2015

Weather and Climate Summary and Forecast December 2017 Report

Trends in CMIP5 Rainfall Patterns over Southwestern Australia

Mozambique. General Climate. UNDP Climate Change Country Profiles. C. McSweeney 1, M. New 1,2 and G. Lizcano 1

L.O Students will learn about factors that influences the environment

On the drivers of inter-annual and decadal rainfall variability in Queensland, Australia

Synoptic Meteorology

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO

Precipitation processes in the Middle East

Weather and Climate Summary and Forecast January 2018 Report

EVIDENCE FOR DECADAL VARIABILITY IN SOUTHERN AUSTRALIAN RAINFALL AND RELATIONSHIPS WITH REGIONAL PRESSURE AND SEA SURFACE TEMPERATURE

Decrease of light rain events in summer associated with a warming environment in China during

The Indian summer monsoon during peaks in the 11 year sunspot cycle

Weather and Climate Summary and Forecast Fall/Winter 2016

Satellites, Weather and Climate Module??: Polar Vortex

27. NATURAL VARIABILITY NOT CLIMATE CHANGE DROVE THE RECORD WET WINTER IN SOUTHEAST AUSTRALIA

Twenty-five years of Atlantic basin seasonal hurricane forecasts ( )

UPDATE OF REGIONAL WEATHER AND SMOKE HAZE (September 2017)

Possible Roles of Atlantic Circulations on the Weakening Indian Monsoon Rainfall ENSO Relationship

Name: Climate Date: EI Niño Conditions

East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon

THE STUDY OF NUMBERS AND INTENSITY OF TROPICAL CYCLONE MOVING TOWARD THE UPPER PART OF THAILAND

NOTES AND CORRESPONDENCE. On the Interpretation of Antarctic Temperature Trends

BRIDGING THE MIDDLE GROUND BETWEEN MEDIUM RANGE WEATHER FORECASTING AND CLIMATE PREDICTION: VERIFYING THE ACCURACY OF 14 DAY OUTLOOKS

5 Atmospheric Disturbances 7 1.Cyclones- tropical and temperate and associated weather conditions. 2.Anticyclones and associated weather conditions.

Weather Related Factors of the Adelaide floods ; 7 th to 8 th November 2005

SUPPLEMENTARY INFORMATION

The North Atlantic Oscillation: Climatic Significance and Environmental Impact

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L20110, doi: /2004gl020843, 2004

UPDATE OF REGIONAL WEATHER AND SMOKE HAZE (December 2017)

CPTEC and NCEP Model Forecast Drift and South America during the Southern Hemisphere Summer

Weather and Climate Summary and Forecast Summer 2016

Seasonal Climate Forecast August October 2013 Verification (Issued: November 17, 2013)

VARIABILITY OF SOUTHEASTERN QUEENSLAND RAINFALL AND CLIMATE INDICES

Appalachian Lee Troughs and their Association with Severe Thunderstorms

Charles Jones ICESS University of California, Santa Barbara CA Outline

The South Eastern Australian Climate Initiative

Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s

Regional influence on road slipperiness during winter precipitation events. Marie Eriksson and Sven Lindqvist

UPDATE OF REGIONAL WEATHER AND SMOKE HAZE (February 2018)

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values

Weather and Climate Summary and Forecast January 2019 Report

Weather and Climate Summary and Forecast Summer into Harvest 2016

Extreme rainfall variability in Australia: Patterns, drivers and predictability

Multi-day severe event of May 2013

North Pacific Climate Overview N. Bond (UW/JISAO), J. Overland (NOAA/PMEL) Contact: Last updated: August 2009

Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia

Transcription:

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 3781 3785, doi:10.1002/grl.50739, 2013 Spatial trends in synoptic rainfall in southern Australia James S. Risbey, 1 Michael J. Pook, 1 and Peter C. McIntosh 1 Received 19 June 2013; revised 10 July 2013; accepted 10 July 2013; published 30 July 2013. [1] This work assesses spatial and temporal changes in rainfall in southern Australia over the period 1990 2009. Rainfall is assessed by season and according to the synoptic system generating the rainfall. Rainfall decreases over the period across much of the southwest, with the most significant decrease occurring around 2000. These changes are associated with frontal and cutoff systems. Frontal systems dominate the timing and changes of rainfall in western Tasmania. In the southeast, the timing and magnitude of rainfall changes are more closely associated with cutoff systems and show consistent decreases in the early 1990s. The largest reductions in rainfall in the southeast are in the Alpine region and are due to cutoffs and fronts and exhibit seasonal and spatial variations consistent with the climatologies of these systems. Citation: Risbey, J. S., M. J. Pook, and P. C. McIntosh (2013), Spatial trends in synoptic rainfall in southern Australia, Geophys. Res. Lett., 40, 3781 3785, doi:10.1002/grl.50739. 1. Introduction [2] Rainfall exhibits substantial variability in space and time. In the Australian region, rainfall is characterized by large interannual and multidecadal variability and shows different trends in different regions of the continent [Nicholls et al., 1997; Gallant et al., 2007]. Variation in rainfall with space across Australia is created by differences in underlying topography, differences in proximity to oceans, and due to the fact that the continent spans different climate zones and is exposed to different mixes of synoptic systems in the different zones [Risbey et al., 2009a]. Variation in rainfall with time is associated with the passage of synoptic systems and the drivers of their variability from year to year in the atmosphere-ocean system [Risbey et al., 2009b]. [3] Since synoptic systems control much of the variability in space and time of rainfall, it is pertinent to examine the contributions of synoptic systems to the underlying spatial rainfall trends across the continent. Since different synoptic types respond to different large scale drivers, the examination of synoptic contributions helps establish the broader causes of rainfall trends [Risbey et al., 2013]. This paper provides an assessment of synoptic system contributions to recent spatial rainfall changes across southern Australia, focusing on a time period encompassing the recent drought. [4] There is no single metric that captures long period variations in rainfall. Some series may exhibit near linear trends for some decades and then reverse. Other series may 1 Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia. Corresponding author: J. S. Risbey, Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, Tas 7000, Australia. (james.risbey@csiro.au) 2013. American Geophysical Union. All Rights Reserved. 0094-8276/13/10.1002/grl.50739 undergo a step change or sequence of step changes. We examine both linear trends and step changes here to reveal different aspects of the longer period behavior. The trends provide an overall assessment of change and the steps provide an indication of when changes occurred. We address whether these metrics are spatially coherent and where they differ for different synoptic systems. 2. Data and Methods [5] The synoptic database for this analysis is a manual identification of the synoptic system producing rain for all rain days in the southwest of Australia [Pook et al., 2012], southeast of Australia excluding Tasmania [Pook et al., 2006], and Tasmania [Pook et al., 2010] in the months April October between 1985 and 2009. Daily synoptic classifications were only available for these months, but they span much of the rainfall season in most parts of southern Australia [Stern et al., 2000]. Tasmania has a synoptic classification separate from the rest of the southeast, because it has significant topography at higher latitude and a distinct climate. [6] The regions used to identify the synoptic systems are shown in Figure 1. For each of the synoptic regions, we have attributed rain in the portions of the continent likely to be influenced by the synoptic systems transiting that region, hereafter designated southwest, southeast, and Tasmania, respectively. The rainfall regions are shown in Figure 2 and are slightly offset from the synoptic boxes in the downstream direction to allow for the typical movement of systems during the 24 h analysis period. [7] The classification of synoptic systems uses the mean sea level pressure field, the 500 hpa height field, and the 1000 500 hpa thickness field from the NCEP/NCAR reanalysis [Kalnay et al., 1996]. The main synoptic systems of interest in this study are frontal systems and cutoff low systems [Pook et al., 2006]. That study also identifies persistent stream flow conditions as a synoptic type, but they are mostly important in the near coastal zone in the southeast and are not discussed here. [8] Rainfall across the continent is assessed using the Australian Water Availability Project (AWAP) data [Raupach et al., 2009; Jones et al., 2009]. The rainfall data on the 0.05 ı 0.05 ı grid was smoothed to a 0.5 ı 0.5 ı grid for analysis since the extra resolution is not needed here. [9] Changes in rainfall are assessed for each of the seasons April, May, June (AMJ); June, July, August (JJA), and August, September, October (ASO). The seasons overlap to maintain 3 month seasons in the April October period in which synoptic classifications were available. [10] Step changes in rainfall are assessed by determining the most significant year to year change in the gridded rainfall series using a standard t test for difference of means [Press et al., 2007]. A condition is imposed that steps must 3781

RISBEY ET AL.: SPATIAL TRENDS IN SYNOPTIC RAINFALL latitude 10 15 20 25 30 35 40 45 50 southwest analysis box Synoptic regions with topography southeast analysis box Tasmania analysis box 110 120 130 140 150 160 longitude Figure 1. Map of Australia showing the three synoptic analysis regions used and the underlying topography. The southern Alps are highlighted by the dark green shading in the southeast corner of the mainland. contain at least 10% of the total years on each side of a step. In each of the figures shown here, most grid points for all seasons and synoptic rainfall types yield step changes significant at the 95% level. For the linear trend analyses, the trends are only significant at this level in the Alpine region of the southeast and parts of the southwest. 3. Rainfall Climatology [11] The spatial distribution of rainfall in southern Australia for the April October period of synoptic analysis is shown in Figure 2a and shows maxima in the southwest corner of Western Australia, the Alpine region of southeastern Australia, and the west of Tasmania. The contributions to the total rainfall from frontal systems and cutoff systems are shown in Figures 2b and 2c, respectively. Fronts provide the main source of rainfall for the maximum in the far southwest and western Tasmania, whereas cutoff systems tend to dominate fronts in the southeast (excepting the Bonney coast). Together, fronts and cutoffs account for about 80% of the rainfall across the regions shown during the April October period. 4. Rainfall Variability and Change [12] There is no unambiguous point in time to assess rainfall trends because the variation in rainfall across these regions is so large over multidecadal time scales, and any trend analysis reflects the period chosen. The southern half of Australia experienced a prolonged drought in the period from the mid-1990s to 2009 [Watkins and Trewin, 2007; Gallant et al., 2007; Murphy and Timbal, 2008; Timbal, 2009; Risbey et al., 2013] and is the subject of the trend analysis here. The drought was more exceptional in the southeast than the southwest, though the latter region has a longer running rainfall deficit extending since the mid-1970s [Gallant et al., 2007]. [13] In regard to the 1996 2009 drought period, one can ask whether the rainfall decreases uniformly in 1996 across southern Australia, and whether the decrease occurs at similar or different times for different synoptic system types. One way to gauge this is to assess the time at which the most significant step in rainfall occurs in the period 1985 2009 prior to and including the drought. This is the period for which we have synoptic classifications and provides a decade prior to the start of the drought to allow earlier steps to be identified as well as those occurring during the drought. The results of this analysis are shown in Figure 3. Here the year in which the significant step occurs is color coded and is shown for separate seasons and for the total rain series and the front and cutoff rain series. [14] For the AMJ season (Figure 3, top row), the total rain series (Figure 3, top left) shows a step around 2000 for much of the southwest, with a step around 1990 along the southern coast. In the southeast, the step is mostly in the early 1990s. The overall pattern and timing of steps in total rain in the southeast is well-reflected in the timing of steps in cutoff rain (Figure 3, top right), whereas in the southwest, the total rain step pattern and timing has elements of both frontal rain (top middle) and cutoff rain. [15] For JJA (Figure 3, center row), the timing of steps in total rain (Figure 3, center left) is similar to the AMJ period. For the southeast again, the timing and pattern of steps in total rain is better reflected by cutoff rainfall (Figure 3, center right) than frontal rainfall (Figure 3, center middle). [16] For ASO (Figure 3, bottom row), the pattern of steps in total rainfall (Figure 3, bottom left) switches to a more uniform step around 1990 in the southwest and a step around 2000 in the southeast. The pattern and timing of steps in total rainfall in ASO is better matched by frontal rain in the southwest and cutoff rain in the southeast. [17] In Tasmania, the timing and direction of steps in total rainfall most closely follows frontal rainfall in the west of the state and cutoff rainfall in the east of the state. This is consistent with the relative shares of rainfall by these synoptic types evident in Figure 2 for the two sides of the state. [18] The direction of steps in the regions favors decreases (steps to drier conditions) over increases (wetter steps) for the analysis period. The main exceptions to this are the increase steps in frontal rainfall for the southwest corner of the southwest region and for western Tasmania. 5. Rainfall Trends [19] Most of the steps in rainfall considered in the previous section are decreases in rainfall and are associated with the mid-1990s to 2009 drought. The association with the drought is also evident in the years of the steps typically the early 1990s or around 2000 depending on location and season. In order to capture the trend in rainfall across the steps, we assess the linear trend in rainfall for the period 1990 2009 in Figure 4. [20] The linear trend for total rainfall is shown in Figure 4 (left column) for the AMJ, JJA, and ASO seasons. There are clear regional differences in the magnitude of the trend. However, the broad pattern shows drying in the southwest (except for the south coast) and drying in the southeast (except for some northern areas). In each season the southwest trend pattern of total rainfall is a closer match to the trend pattern for fronts (Figure 4, middle column), while the southeast (excepting Tasmania) is more closely matched by the cutoff trend pattern (Figure 4, right column). 3782

RISBEY ET AL.: SPATIAL TRENDS IN SYNOPTIC RAINFALL Figure 2. April October average rainfall (mm) over years 1985 2009 for (a) total rainfall from all systems, (b) rain from frontal systems only, and (c) rain from cutoff systems only. [21] The drying trend in the southeast is a maximum over the areas of topography in the southern Alps and western Tasmania (except for ASO in western Tasmania). In each season the drying trend over the southern Alps is contributed to by a drop in both frontal and cutoff rainfall. The fronts contribute more to the Alps reduction than cutoffs in JJA (when the westerlies are closest to the equator), but less than cutoffs in the shoulder seasons. Further, the negative frontal trend tends to decrease rainfall on the western slope of the Alps, while the negative cutoff trend decreases rainfall on the north and east slopes of the Alps, consistent with typical flow in these systems. Frontal rainfall in the Alps favors orographic ascent in westerly streams, whereas cutoff systems generate significant rainfall in warm, moist upglide from the northeast [McIntosh et al., 2007]. The changes in rainfall in the mountains of western Tasmania (decrease in Figure 3. Year in which the most significant step in rainfall series occurs in the period 1985 2009 for (left column) total rainfall from all systems, (middle column) rain from frontal systems only, and (right column) rain from cutoff systems only. The top row is for months AMJ, the middle row for JJA, and the bottom row for ASO. Steps represent decreases unless indicated by the presence of a black dot, which denotes increases. The white hatched areas indicate steps significant at the 95% level. 3783

RISBEY ET AL.: SPATIAL TRENDS IN SYNOPTIC RAINFALL Figure 4. Linear trend (mm/year) in rainfall series over the period 1990 2009 for (left column) total rainfall from all systems, (middle column) rain from frontal systems only, and (right column) rain from cutoff systems only. The top row is for months AMJ, the middle row for JJA, and the bottom row for ASO. Trend areas significant at the 95% level are indicated by white hatching. The innermost contour levels are 0.2 and 0.5 mm/year. AMJ, JJA; increase in ASO) are much more closely associated with changes in frontal rainfall than cutoff rainfall as expected. [22] Note that the southernmost part of the southwest region has weak trends in all seasons. In ASO, there is no trend in total rainfall there, but compensating increases in frontal rainfall (consistent with the step in Figure 3 toward wetter conditions) and decreases in cutoff rainfall. 6. Conclusions [23] The spatial changes and trends in rainfall in southern Australia over the period since 1985 show broad similarities in subregions (southwest, southeast, western Tasmania), but clear differences from subregion to subregion. The reduction in rainfall in the southwest is most evident from around 2000 in AMJ and JJA. The timing and changes in rainfall there are associated with both frontal and cutoff rainfall. [24] In the southeast, the reduction in rainfall occurs in the early 1990s for AMJ and JJA, but the most significant step drop is much later for the ASO season. The timing and magnitude of rainfall reductions is more closely associated with cutoffs in the southeast, but fronts also contribute, especially on the western slope of the Alps. In western Tasmania, the changes in rainfall timing and amount reflect mostly changes in frontal rainfall. [25] The synoptic signature of rainfall can be reasonably well-decomposed from the total rainfall by accounting for the synoptic system responsible for each rainfall event. That in turn highlights the systems that tend to be most important in particular regions. During the April October period, two synoptic types (fronts and cutoffs) broadly suffice to explain the patterns and timing of rainfall changes across southern Australia. [26] Explanations of rainfall changes should be consistent with an understanding of which processes drive the dominant synoptic types in a region. Both fronts and cutoffs are associated with baroclinic zones (particularly for development) and the longwave pattern (for steering). However, fronts are typically embedded in a westerly stream and respond to latitudinal (north-south) shifts in baroclinic zones and the westerly stream [Frederiksen and Frederiksen, 2007]. By contrast, cutoffs are equatorward of the westerly stream and respond more directly to zonally asymmetric excursions of the stream and shifts in the locations of the longwave troughs and ridges [Risbey et al., 2013]. That implies that a fuller understanding of causes of rainfall changes in southern Australia needs to account for longitudinal as well as latitudinal shifts in the storm tracks. 3784

RISBEY ET AL.: SPATIAL TRENDS IN SYNOPTIC RAINFALL [27] Acknowledgments. This work was supported by the Climate Adaptation Flagship of CSIRO and the Managing Climate Variability program of the Grains Research and Development Corporation, Australia. We are grateful for the constructive reviews. [28] The Editor thanks two anonymous reviewers for their assistance in evaluating this paper. References Frederiksen, J., and C. Frederiksen (2007), Interdecadal changes in southern hemisphere winter storm track modes, Tellus, 59(5), 599 617. Gallant, A., K. Hennessy, and J. Risbey (2007), Trends in rainfall indices for six Australian regions: 1910 2005, Aust. Meteorol. Mag., 56(4), 223 241. Jones, D., W. Wang, and R. Fawcett (2009), High-quality spatial climate data-sets for Australia, Aust. Meteorol. Oceanogr. J., 58(12), 233 248. Kalnay, E., et al. (1996), The NCEP-NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437 471. McIntosh, P., M. Pook, J. Risbey, S. Lisson, and M. Rebbeck (2007), Seasonal climate forecasts for agriculture: Towards better understanding and value, Field Crop. Res., 104(1 3), 130 138. Murphy, B., and B. Timbal (2008), A review of recent climate variability and climate change in southeastern Australia, Int. J. Climatol., 28 (7), 859 879. Nicholls, N., W. Drosdowsky, and B. Lavery (1997), Australian rainfall variability and change, Weather, 52(3), 66 71. Pook, M., P. McIntosh, and G. Meyers (2006), The synoptic decomposition of cool-season rainfall in the southeastern Australian cropping region, J. Appl. Meteorol. Climatol., 45(8), 1156 1170. Pook, M., J. Risbey, and P. McIntosh (2010), East coast lows, atmospheric blocking and rainfall: A Tasmanian perspective, IOP Conf. Ser. Earth Environ. Sci., 11(1), 1 6. Pook, M., J. Risbey, and P. McIntosh (2012), The synoptic climatology of cool-season rainfall in the central wheatbelt of Western Australia, Mon. Weather Rev., 140(1), 28 43. Press, W., S. Teukolsky, W. Vetterling, and B. Flannery (2007), Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge Univ. Press, Cambridge, U. K. Raupach, M., P. Briggs, V. Haverd, E. King, M. Paget, and C. Trudinger (2009), Australian water availability project (AWAP): CSIRO Marine and Atmospheric Research component: Final report for phase 3, Tech. Rep. 13, CAWCR, 67 pp., Canberra. Risbey, J., M. Pook, P. McIntosh, C. Ummenhofer, and G. Meyers (2009a), Characteristics and variability of synoptic features associated with cool season rainfall in southeastern Australia, Int. J. Climatol., 29(11), 1595 1613. Risbey, J., M. Pook, P. McIntosh, M. Wheeler, and H. Hendon (2009b), On the remote drivers of rainfall variability in Australia, Mon. Weather Rev., 137(10), 3233 3253. Risbey, J., P. McIntosh, and M. Pook (2013), Synoptic components of rainfall variability and trends in southeastern Australia, Int. J. Climatol., doi:10.1002/joc.3597. Stern, H., G. de Hoedt, and J. Ernst (2000), Objective classification of Australian climates, Aust. Meteorol. Mag., 49(2), 87 96. Timbal, B. (2009), The continuing decline in southeast Australian rainfall: Update to May 2009, CAWCR Res. Lett., 1(2), 4 11. Watkins, A., and B. Trewin (2007), Australian climate summary: 2006, Bull. Aust. Meteorol. Oceanogr. Soc., 20(1), 10 17. 3785