Diagrammatic Monte Carlo simulation of quantum impurity models

Similar documents
Diagrammatic Monte Carlo methods for Fermions

Continuous time QMC methods

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

The Hubbard model out of equilibrium - Insights from DMFT -

Introduction to DMFT

w2dynamics : operation and applications

A continuous time algorithm for quantum impurity models

Electronic correlations in models and materials. Jan Kuneš

Spin and orbital freezing in unconventional superconductors

Magnetic Moment Collapse drives Mott transition in MnO

IMPACT ionization and thermalization in photo-doped Mott insulators

Role of Hund Coupling in Two-Orbital Systems

Quantum impurity models Algorithms and applications

6. Auxiliary field continuous time quantum Monte Carlo

Dual fermion approach to unconventional superconductivity and spin/charge density wave

An introduction to the dynamical mean-field theory. L. V. Pourovskii

O. Parcollet CEA-Saclay FRANCE

Continuous-time quantum Monte Carlo algorithms for impurity problems

Cluster Extensions to the Dynamical Mean-Field Theory

An efficient impurity-solver for the dynamical mean field theory algorithm

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Continuous Time Monte Carlo methods for fermions

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Mott transition : beyond Dynamical Mean Field Theory

Realistic Materials Simulations Using Dynamical Mean Field Theory

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

DMFT for correlated bosons and boson-fermion mixtures

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

Field-Driven Quantum Systems, From Transient to Steady State

Quantum Cluster Methods (CPT/CDMFT)

Dynamical Mean Field within Iterative Perturbation Theory

NiO - hole doping and bandstructure of charge transfer insulator

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT

Quantum impurities in a bosonic bath

Bose-Hubbard Model (BHM) at Finite Temperature

EQUATION OF STATE OF THE UNITARY GAS

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

561 F 2005 Lecture 14 1

Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium

The Gutzwiller Density Functional Theory

Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions

Accelerated Monte Carlo simulations with restricted Boltzmann machines

Magnetism and Superconductivity in Decorated Lattices

Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

The Mott Metal-Insulator Transition

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

arxiv:cond-mat/ v2 [cond-mat.str-el] 24 Feb 2006

Diagrammatic extensions of (E)DMFT: Dual boson

Dynamical mean-field theory and strong correlations in solids and molecules

4 Development of the LDA+DMFT Approach

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering

Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator

Local moment approach to multi-orbital Anderson and Hubbard models

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

Quantum Monte Carlo method in details.

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Magnetism and Superconductivity on Depleted Lattices

Mott physics: from basic concepts to iron superconductors

Finite Temperature Field Theory

arxiv: v2 [cond-mat.str-el] 27 Feb 2013

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

The Hubbard Model In Condensed Matter and AMO systems

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Weak-Coupling CT-QMC: projective schemes and applications to retarded interactions.

Phase Diagram of the Multi-Orbital Hubbard Model

Spin liquid phases in strongly correlated lattice models

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Part III: Impurities in Luttinger liquids

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

From unitary dynamics to statistical mechanics in isolated quantum systems

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC

Iterative real-time path integral approach to nonequilibrium quantum transport

Bad metallic behavior, entropy & thermopower: DMFT results on ruthenates

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mean field theories of quantum spin glasses

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Advanced Computation for Complex Materials

arxiv: v1 [physics.comp-ph] 10 Aug 2017

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Topological Kondo Insulators!

Correlated Electron Dynamics and Nonequilibrium Dynamical Mean-Field Theory

Transport Coefficients of the Anderson Model via the numerical renormalization group

Superconducting properties of carbon nanotubes

7.4. Why we have two different types of materials: conductors and insulators?

Lecture 20: Effective field theory for the Bose- Hubbard model

The nature of superfluidity in the cold atomic unitary Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas

Quantum quenches in the thermodynamic limit

The bosonic Kondo effect:

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Simulations of Quantum Dimer Models

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

Metal-insulator transition with Gutzwiller-Jastrow wave functions

Transcription:

Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009

Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary field decomposition Application: electron pockets in the 2D Hubbard model Hybridization expansion ``Strong coupling method for general classes of impurity models Application: spin freezing transition in a 3-orbital model Adaptation to non-equilibrium systems quantum dots / non-equilibrium DMFT Collaborators E. Gull, A. J. Millis, T. Oka, O. Parcollet, M. Troyer

Dynamical mean field theory Metzner & Vollhardt, PRL (1989) Georges & Kotliar, PRB (1992) Self-consistency loop lattice model impurity model t tk G latt dk 1 iω n +µ ɛ k Σ latt G latt G imp H imp impurity solver Σ latt Σ latt Σ imp G imp, Σ imp Computationally expensive step: solution of the impurity model

Diagrammatic QMC General recipe: Split Hamiltonian into two parts: H = H 1 + H 2 Use interaction representation in which O(τ) = e τh 1 Oe τh 1 Write partition function as time-ordered exponential, expand in powers of H 2 Z = T r [e βh 1 T e R ] β 0 dτh 2(τ) = k β 0 dτ 1... β 0 dτ k ( 1) k k! [ ] T r e βh 1 T H 2 (τ 1 )... H 2 (τ k ) Weak-coupling expansion: Rombouts et al., (1999), Rubtsov et al. (2005), Gull et al. (2008) expand in interactions, treat quadratic terms exactly Hybridization expansion: Werner et al., (2006), Werner & Millis (2006), Haule (2007) expand in hybridizations, treat local terms exactly

CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Impurity model given by H = H 0 + H U H 0 = K/β (µ U/2)(n + n ) + H hyb + H bath H U = U(n n (n + n )/2) K/β Expand partition function into powers of the interaction term Z = ( 1) k [ ] dτ 1... dτ k T r T e βh 0 H U (τ 1 )... H U (τ k ) k! k Decouple the interaction terms using Rombouts et al., PRL (1999) H U = K 2β s=±1 e γs(n n ), cosh(γ) = 1 + βu 2K

CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

M-I transition in the 2D Hubbard model Hubbard model with nn hopping t, nnn hopping t =0 (bandwidth 8t) H = p,α ɛ p c p,αc p,α + U i n i, n i, ɛ p = 2t(cos(p x ) + cos(p y )) DMFT: approximate momentum-dependence of the self-energy Σ(p, ω) = a φ a (p)σ a (ω) DCA: ``tiling of the Brillouin zone

M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector 0.56 0.55 0.54!t=40, B!t=40, C!t=20, B!t=20, C n 0.53 0.52 0.51 B C B C 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4!/t

M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets Gull et al., arxiv (2008) 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector n 0.56 0.55 0.54 0.53!t=40, B!t=40, C!t=20, B!t=20, C 0.52 B 0.51 C 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4!/t

M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets Gull et al., arxiv (2008) 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector n 0.56 0.55 0.54 0.53!t=40, B!t=40, C!t=20, B!t=20, C 0.52 B 0.51 C 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4!/t

M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector n 0.56 0.55 0.54 0.53!t=40, B!t=40, C!t=20, B!t=20, C 0.52 B 0.51 C 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4!/t

M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector Assuming an ellipsoidal shape for the pocket, we can estimate the aspect ratio b a 1 a 10 b

Hybridization expansion Werner et al., PRL (2006) Werner & Millis, RPB (2006) Haule, PRB (2007) Impurity model given by H = H loc + H bath + H hyb H loc = Un n µ(n + n ) H hyb = t σ p c σa p,σ + h.c. p,σ Expand partition function into powers of the hybridization term Z = 1 [ ] dτ 1... dτ 2k T r T e β(h loc+h bath ) H hyb (τ 1 )... H hyb (τ 2k ) 2k! k Trace over bath degrees of freedom yields determinant of hybridization functions F T r bath [...] = σ det Mσ 1, Mσ 1 (i, j) = F σ (τ (c) i τ (c ) j ) t σ p 2 F σ ( iω n ) = p iω n ɛ p

Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

Spin freezing transition in a 3-orbital model 1 site, 3 degenerate orbitals (semi-circular DOS, bandwidth 4t) H loc = µn α,σ + Un α, n α, α,σ α + α>β,σ U n α,σ n β, σ + (U J)n α,σ n β,σ Werner et al., PRL (2008) α β J(ψ α, ψ β, ψ β, ψ α, + ψ β, ψ β, ψ α, ψ α, + h.c.) Captures essential physics of SrRuO3 Similar models for other transition metal oxides, actinide compounds, Fe / Ni based superconductors,...

Spin freezing transition in a 3-orbital model Phase diagram for U = U = 2J, J/U = 1/6, βt = 50 Werner et al., PRL (2008) 16 14 12 10 0 1 2 3 16 14 12 10 U/t 8 U/t 8 6 6 4 2 4 2 Mott insulator (!t=50) 0-5 0 5 10 15 20 25 30 35 40 µ/t 0 0 0.5 1 1.5 2 2.5 3 n Mott insulating ``lobes with 1, 2, 3, (4, 5) electrons

Spin freezing transition in a 3-orbital model Phase diagram for U = U = 2J, J/U = 1/6, βt = 50 Werner et al., PRL (2008) 16 14 12 0 1 2 3 16 14 12 U/t 10 8 U/t 10 8 Fermi liquid frozen moment 6 6 4 2 glass transition 4 2 glass transition Mott insulator (!t=50) 0-5 0 5 10 15 20 25 30 35 40 µ/t 0 0 0.5 1 1.5 2 2.5 3 n Mott insulating ``lobes with 1, 2, 3, (4, 5) electrons In the metallic phase: transition from Fermi liquid to ``spin glass

Spin freezing transition in a 3-orbital model Phase diagram for U = U = 2J, J/U = 1/6, βt = 50 Werner et al., PRL (2008) 16 14 12 0 1 2 3 16 14 12 U/t 10 8 U/t 10 8 Fermi liquid frozen moment 6 6 4 2 glass transition 4 2 glass transition Mott insulator (!t=50) 0-5 0 5 10 15 20 25 30 35 40 µ/t 0 0 0.5 1 1.5 2 2.5 3 n Critical exponents associated with the transition can be seen in a wide quantum critical regime e. g. non Fermi-liquid self-energy ImΣ/t (iω n /t) α, α 0.5

Spin freezing transition in a 3-orbital model Werner et al., PRL (2008) A self-energy with frequency dependence Σ(ω) ω 1/2 implies an optical conductivity σ(ω) 1/ω 1/2

Real-time formalism Quantum dot coupled to two infinite leads Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) H = H dot + H leads + H mix H dot = ɛ d (n d + n d ) + Un d n d H leads = α=l,r H mix = pσ α=l,r p,σ ( ɛ α pσ µ α ) a α pσa α pσ ( V α p a α pσd σ + h.c. ) Goldhaber-Gordon (1998) Initial preparation of the dot: ρ 0,dot Non-interacting leads: ρ 0,leads (DOS, Fermi distribution function) Level broadening: Γ α (ω) = π Vp α 2 δ(ω ɛ α p ) p

Real-time formalism Quantum dot coupled to two infinite leads H = H dot + H leads + H mix H dot = ɛ d (n d + n d ) + Un d n d H leads = α=l,r H mix = pσ α=l,r p,σ ( ɛ α pσ µ α ) a α pσa α pσ ( V α p a α pσd σ + h.c. ) Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) µ L ɛ p V p U ɛ d V p Goldhaber-Gordon (1998) µ R µ R ɛ p Initial preparation of the dot: ρ 0,dot Non-interacting leads: ρ 0,leads (DOS, Fermi distribution function) Level broadening: Γ α (ω) = π Vp α 2 δ(ω ɛ α p ) p

Real-time formalism Interaction picture Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) H = H 1 + H 2, O(s) = e ish 1 Oe ish 1 O(t) = T r [ρ 0 e iht Oe iht] ( = T r [ρ 0 T e i R ) t 0 dsh 2(s) O(t) (T e i R )] t 0 dsh 2(s ) ``Keldysh contour ρ 0 e iht O 0 t e iht Expand time evolution operators in powers of H 2

Real-time formalism Interaction picture Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) H = H 1 + H 2, O(s) = e ish 1 Oe ish 1 O(t) = T r [ρ 0 e iht Oe iht] ( = T r [ρ 0 T e i R ) t 0 dsh 2(s) O(t) (T e i R )] t 0 dsh 2(s ) ``Keldysh contour ρ 0 ih 2 ih 2 ih 2 O 0 ih 2 ih 2 t Expand time evolution operators in powers of H 2

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Configuration space: all possible spin configurations on the Keldysh contour Weight: analogous to imaginary-time CT-AUX with { G G 0,σ (t K, t < K) = 0,σ (t, t ) t K < t K G > 0,σ (t, t ) t K t K ( G </> dω 0 (t, t ) = ±i 2π e iω(t t ) α=l,r Γα 1 tanh ( ω µ α )) 2T (ω ɛ d U/2) 2 + Γ 2

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Configuration space: all possible spin configurations on the Keldysh contour current Weight: analogous to imaginary-time CT-AUX with V p a pσd σ { G G 0,σ (t K, t < K) = 0,σ (t, t ) t K < t p K G > 0,σ (t, t ) t K t K ( G </> dω 0 (t, t ) = ±i 2π e iω(t t ) α=l,r Γα 1 tanh ( ω µ α )) 2T (ω ɛ d U/2) 2 + Γ 2

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Interaction and voltage dependence of the current 0.74 0 I/! 0.72 0.7 0.68 0.66 0.64 0.62 0.6 0.58 U/!=2 U/!=3 (I(U)-I(0))/! -0.02-0.04-0.06-0.08-0.1-0.12 U/!=2 U/!=3 0.56 0 0.5 1 1.5 2 2.5 3 t! -0.14 0 2 4 6 8 10 V/! Interaction suppresses the current Correction largest for V U 4th order perturbation theory by Fujii & Ueda identical to MC for U = 2Γ

Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Interaction and voltage dependence of the double occupancy double occupancy 0.25 0.24 0.23 0.22 0.21 0.2 U = 2Γ V/!=0 V/!=1 V/!=2 V/!=3 V/!=4 steady state double occupancy 0.25 0.24 0.23 0.22 0.21 0.2 0.19 0.18 U/!=2 U/!=3 0.19 0 0.5 1 1.5 2 2.5 3 t! 0.17 0 2 4 6 8 10 V/! Convergence to steady state faster for larger voltage bias

Weak-coupling expansion Non-equilibrium DMFT Dynamics of the Hubbard model after a ``quantum quench Eckstein and Werner (work in progress) ReG(t, t ) 0.5 0.4 0.3 0.2 0.1-0.1 0-0.2-0.3-0.4-0.5 "G_u5t3_1" u 2:4:6 "G_u5t3_2" u 2:4:6 "G_u5t3_9" u 2:4:6 3 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 ImG(t, t ) 0.6 0.5 0.4 0.3 0.2 0.1-0.1 0-0.2-0.3 "G_u5t3_1" u 2:4:8 "G_u5t3_2" u 2:4:8 "G_u5t3_9" u 2:4:8 3 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3

Weak-coupling expansion Non-equilibrium DMFT Dynamics of the Hubbard model after a ``quantum quench Eckstein and Werner (work in progress) n k 1 0.8 eps k =-2... eps k =2 0.9 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 t 1.2 1.4-2 -1.5-1 -0.5 0 0.5 eps k 1 1.5 2 n k 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Hybridization expansion Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Configuration space: all possible segment configurations on the (doubled) Keldysh contour 0! 0! 2!+ U! 0! " 0 0 Hybridization matrix becomes Σ < (t 1 t 1) Σ < (t 2 t 1)... Σ > (t 1 t 2) Σ < (t 2 t 2)............ t Monte Carlo sampling: random insertions/removals of segments

Hybridization expansion Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Configuration space: all possible segment configurations on the (doubled) Keldysh contour! 0 0 Hybridization matrix becomes Σ < (t 1 t 1) Σ < (t 2 t 1)... Σ > (t 1 t 2) Σ < (t 2 t 2)............ t Monte Carlo sampling: random insertions/removals of segments

Hybridization expansion Σ <,> depends on the DOS and voltage bias Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) "2# c! µ R # c µr! µ L µ L $# c soft cutoff: hard cutoff: Σ <,> soft (t) = Γ cos( V 2 ) β sinh( π β (t ± i/ω c)) Σ <,> hard (t) = Γ ( cos( V 2 t) β sinh( π β t) ) e±iωct ν sinh( π ν t)

Hybridization expansion Initial state: dot decoupled from the leads Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Time evolution of the left, right and average current ( U/Γ = 8) 0.4 1 current/! 0.2 0-0.2-0.4-0.6-0.8-1 I L =-I R, V/!=0-1.2 I L, V/!=5-1.4 -I R, V/!=5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 t! current/! 0.5 0-0.5-1 -1.5-2 dn/dt=i L -I R, V/!=0 dn/dt=i L -I L, V/!=5-2.5 2I=I L +I R, V/!=5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 t! Initially, electrons rush to the dot from both leads; after tγ 2 a ``steady state is established with I L = I R

Hybridization expansion Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Current-Voltage characteristic of a strongly interacting dot ( U/Γ = 8) measured at tγ = 1, 1.25 I/! 0.7 0.6 0.5 0.4 0.3 0.2 0.1 V/!=10 9 8 7 6 5 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 t! I/! 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 U/!=0 4 6 0 0 2 4 6 8 10 12 14 16 8 V/! 10 12 14 Is tγ = 1, 1.25 close enough to steady state? Probably not for small voltage bias

Hybridization expansion Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Comparison to ``fixed gap calculation and 4th order perturbation theory 1 1 0.9 0.8 U/!=0 0.9 0.8 U/!=0 0.7 0.7 4 6 I/! 0.6 0.5 8 12 I/! 0.6 0.5 8 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 2 4 6 8 10 12 14 16 V/! 0 0 2 4 6 8 10 12 14 16 V/!

(Dis)advantages of the two approaches Perturbation order: weak-coupling (left), hyb-expansion (right) 1 0.1 U/!=2 U/!=3 U/!=4 1 0.1 U/!=0 U/!=5 probability 0.01 0.001 probability 0.01 0.001 0.0001 0.0001 1e-05 0 2 4 6 8 10 perturbation order 1e-05 0 2 4 6 8 10 perturbation order Weak-coupling: restricted to small U, but can reach steady state Hybridization expansion: cannot quite reach steady state for U>0, requires finite bandwidth, but can treat strong interactions Both: sign problem which grows exponentially with time

Summary and Conclusions Diagrammatic QMC impurity solvers Enable efficient DMFT simulations of fermionic lattice models Weak-coupling solver scales favorably with number of sites/ orbitals: ideal for large impurity clusters Hybridization expansion allows to treat multi-orbital models with complicated interactions Keldysh implementation of diagrammatic QMC Enables the study of transport and relaxation dynamics Sign problem prevents the simulation of long time intervals Impurity solver for non-equilibrium DMFT