Automotive Power CAD. Statistical Simulation Methodology for a Smart Power Technology

Similar documents
Different Strategies for Statistical Compact Modeling MOS-AK Dresden

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis

Statistical modeling with backward propagation of variance and covariance equation

DC and AC modeling of minority carriers currents in ICs substrate

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

The Devices. Jan M. Rabaey

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA

MOS Transistor Theory

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

MOSFET: Introduction

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

EE105 - Fall 2005 Microelectronic Devices and Circuits

The Physical Structure (NMOS)

The Devices. Devices

N-Channel Enhancement-Mode Vertical DMOS FET

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 4: CMOS Transistor Theory

2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer?

LAYOUT TECHNIQUES. Dr. Ivan Grech

EE105 - Fall 2006 Microelectronic Devices and Circuits

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOS Transistor Theory

Practice 3: Semiconductors

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i-

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

Chapter 4 Field-Effect Transistors

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

Random Offset in CMOS IC Design

N-Channel Enhancement-Mode Vertical DMOS FETs

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Chapter 2 Switched-Capacitor Circuits

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Device Models (PN Diode, MOSFET )

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

MOS Transistor Properties Review

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Lecture 12: MOSFET Devices

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

ECE 497 JS Lecture - 12 Device Technologies

Lecture 04 Review of MOSFET

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

6.012 Electronic Devices and Circuits

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

N-Channel Enhancement-Mode Vertical DMOS FET

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

University of Toronto. Final Exam

MOS Transistor I-V Characteristics and Parasitics

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

6.012 Electronic Devices and Circuits Spring 2005

Simple and accurate modeling of the 3D structural variations in FinFETs

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Supertex inc. TN0104. N-Channel Enhancement-Mode Vertical DMOS FET. Features. General Description. Applications. Ordering Information.

University of Pittsburgh

2. (2pts) What is the major reason that contacts from metal to poly are not allowed on top of the gate of a transistor?

About Modeling the Reverse Early Effect in HICUM Level 0

S No. Questions Bloom s Taxonomy Level UNIT-I

6.012 Electronic Devices and Circuits

Lecture 5: CMOS Transistor Theory

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

Chapter 2 Process Variability. Overview. 2.1 Sources and Types of Variations

Section 12: Intro to Devices

Device Models (PN Diode, MOSFET )

Field-Effect (FET) transistors

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Topics to be Covered. capacitance inductance transmission lines

Variation-Resistant Dynamic Power Optimization for VLSI Circuits

EE 560 MOS TRANSISTOR THEORY

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

DC and Transient Responses (i.e. delay) (some comments on power too!)

6. The default plot created by Excel meets all of the requirements for a formal report plot in ME 360.

Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS. Yu-Hsing Cheng ON Semiconductor October 15, 2018

BIPOLAR JUNCTION TRANSISTOR MODELING

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type

Subthreshold Logical Effort: A Systematic Framework for Optimal Subthreshold Device Sizing

Lecture 5: DC & Transient Response

Digital Integrated Circuits

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1.

EECS130 Integrated Circuit Devices

Transcription:

Automotive Power CAD Infineon Statistical Simulation Methodology for a Smart Power Technology 2007, Oct 19 th AK Bipolar 2007 / Munich Dr. Elmar Gondro Page 1

Outline Motivation Modeling Flow Model Quality Conclusion Page 2

Motivation / Wake-Up Zero Zero Defect Defect TD Design Design 4 Manufacturability Yield Yield Enhancemen tt CAD Automotive Excellence PD Flow Quality Model Quality Nominal & statistical Representation of all future Fab Outputs Page 3

Five Steps Extraction Process of Electrical Parameters Extraction Centering µ Nominal Parameters PCM Spec Limits Deviations σ Correlations Statistical Parameters Mismatch Testchip Matching Consts Page 4

Step 1: Nominal Parameters 1e6 10000 I C meas simu I B meas simu 100 PCM Limits Mismatch I [µa] 1 0.01 0.0001 1e 6 PCM parameters: Vbe Ic β Ib Vbd none 1e 8 0.2 0.4 0.6 0.8 1 1.2 V BE [V] source: /EP/-Docu (Bipolar / Tempsense) Page 5

Step 1: Nominal Parameters PCM Limits Mismatch Re-Simulation Schematics SMART5 PCM: 41 of 75 device types covered 143 of 194 PCM setups can be re-simulated simultaneously source: /PCM/-Docu (Bipolar) Page 6

Step 2: Parameter Centering past (T7) PCM Limits Mismatch propability density µ Page 7

Step 2: Parameter Centering PCM Limits Mismatch propability density Definition!!! µ=target Page 8

Step 2: Parameter Centering PCM Limits Mismatch propability density Nom µ=target Page 9

Step 2: Parameter Centering PCM Limits Mismatch propability density µ=target=nom Page 10

Step 3: Process Deviations PCM Limits Mismatch propability density 6 σ 6 σ Centering and ±6σ cpk=2 Definition!!! µ=target=nom Page 11

Step 3: Process Deviations today past (T7) PCM Limits Mismatch propability density µ=target=nom Page 12

Step 3: Process Deviations today past (T7) future PCM Limits Mismatch propability density µ=target=nom Page 13

Step 3: Process Deviations PCM Limits Mismatch propability density µ=target=nom Page 14

Step 3: Process Deviations PCM Limits Mismatch propability density µ=target=nom Page 15

Step 3: Process Deviations PCM Limits Mismatch propability density Centering and ±3σ cpk=1 Definition!!! 3 σ 3 σ µ=target=nom Page 16

Step 3: Process Deviations Normalized PCM Window with 3 σ Process Variations Parameter Classification Vt MNLE2 YY simu PCM Limits G MNLE2 MM Mismatch Ron MNLE2 MM Isat MNLE2 YY MOSFET Target source: /MQ/-Docu (Low Volt NMOS) Page 17

Step 3: Process Deviations Normalized PCM Window with 3 σ Process Variations Parameter B QNBH 200n Classification MM simu B QNBH 20u YM PCM Limits B QNBH 200u MM VBE QNBH 1m MM Mismatch VBE QNBH 50u MM VCEO QNBH no simulation possible RM VCB QNBH no simulation possible RM VEB QNBH no simulation possible RM Bipolar Target source: /MQ/-Docu (qnbh Bipolar) Page 18

Step 3: Process Deviations PCM Limits I [µa] Gummel Poon and beta Plot 10000 100 1 0.01 0.0001 1e 6 I C meas simu I B meas simu 90 80 meas simu beta @ Ic=200n, 20u, 200u Mismatch 1e 8 0.2 0.4 0.6 Vbe @ Ic=50u, 1m 70 60 0.8 1 1.2 V BE [V] β [ ] 50 40 30 20 Bipolar 10 0 1e 6 0.0001 0.01 1 100 I C [µa] source: /EP/-Docu (qnbh Bipolar) Page 19 10000

Step 4: Correlation Table PCM Limits Mismatch Page 20

Step 4: Correlations Nom=0.838 =0.943 0.95 PCM: c = 0.818 Sim: c = 0.751 PCM Limits Mismatch Target=0.852 Vt MNNE2 [V] 0.9 0.85 Nom=0.863 0.8 =0.761 0.75 0.75 0.8 0.85 =0.738 Target=0.834 Vt MNLE2 [V] 0.9 =0.93 source: /PCM/-Docu Page 21

Step 5: Mismatch Parameters Special Device Pair Measurements on Testchip required PCM Limits Mismatch σ mismatch = const mismatch 2 Area Threshold voltages of MOS transistors Current gains of bipolar Sheet resistances of poly resistors Page 22

Monte Carlo Sections Comment Distribution nom Gaussian distribution of samples µ = Target = (+)/2 σ = (-µ)/3 = (-)/6 unif uniform distribution of samples µ = Target = (+)/2 σ = (- µ)/sqrt(3) = σ[nom]*sqrt(3) Page 23

Monte Carlo Sections nom unif Comment Gaussian distribution of samples µ = Target = (+)/2 σ = (-µ)/3 = (-)/6 uniform distribution of samples µ = Target = (+)/2 σ = (-µ)/sqrt(3) = σ[nom]*sqrt(3) Distribution unif2s3s uniform distribution of samples within 2σ and 3σ µ = Target = (+)/2 σ (-µ)*0.84 = σ[nom]*2.5 speclimits parameters shifted to their Spec Limits ( or ) µ = Target = (+)/2 σ = -µ = σ[nom]*3 Page 24

Monte Carlo Sections w/ Parasitics w/o Parasitics Comment Distribution nom nom_nopar Gaussian distribution of samples µ = Target = (+)/2 σ = (-µ)/3 = (-)/6 unif unif_nopar uniform distribution of samples µ = Target = (+)/2 σ = (-µ)/sqrt(3) = σ[nom]*sqrt(3) unif2s3s unif2s3s_nopar uniform distribution of samples within 2σ and 3σ µ = Target = (+)/2 σ (-µ)*0.84 = σ[nom]*2.5 speclimits speclimits_nopar parameters shifted to their Spec Limits ( or ) µ = Target = (+)/2 σ = -µ = σ[nom]*3 Page 25

Example 1: PCM Par Vt_MNLE2 MC Section nom 4000 3500 Nom=0.838 PCM µ=0.836 σ=0.0121 N =1677 Sim µ=0.84 σ=0.032 N =1000 Spec µ=0.834 σ=0.032 propability density [%] 3000 2500 2000 1500 1000 500 0 0.75 =0.738 0.8 0.85 Target=0.834 0.9 =0.93 V th [V] source: /PCM/-Docu Page 26

Example 2: PCM Par Vt_MNLE2 MC Section unif 4000 3500 Nom=0.838 PCM µ=0.836 σ=0.0121 N =1677 Sim µ=0.838 σ=0.0551 N =1000 Spec µ=0.834 σ=0.055 3000 propability density [%] 2500 2000 1500 1000 500 0 0.75 =0.738 0.8 0.85 Target=0.834 0.9 =0.93 V th [V] Page 27

Example 3: PCM Par Vt_MNLE2 MC Section unif2s3s 4000 3500 Nom=0.838 PCM µ=0.836 σ=0.0121 N =1677 Sim µ=0.838 σ=0.0807 N =1000 Spec µ=0.834 σ=0.081 propability density [%] 3000 2500 2000 1500 1000 500 0 0.75 =0.738 0.8 0.85 Target=0.834 0.9 =0.93 V th [V] Page 28

Example 4: PCM Par Vt_MNLE2 MC Section speclimits 8000 7000 Nom=0.838 PCM µ=0.836 σ=0.0121 N =1677 Sim µ=0.838 σ=0.0962 N =1000 Spec µ=0.834 σ=0.096 propability density [%] 6000 5000 4000 3000 2000 1000 0 0.75 =0.738 0.8 0.85 Target=0.834 0.9 =0.93 V th [V] Page 29

Corner Sections Comment depfast_dmosfast depslow_dmosfast depfast: dmosfast: δv th (MNND)=-0.139V δv th (MNND2)=-0.154V δl cap (MNTE, MNSE2)=-0.25µm depfast_dmosslow depslow_dmosslow depslow: dmosslow: δv th (MNND, MNND2)=0.243V δl cap (MNTE, MNSE2)=0.32µm There are no universally valid worst cases in BCD Technologies Corners have to be defined by Device Team according to the needs of Product Development! Page 30

Corner Sections Comment depfast_dmosfast depslow_dmosfast depfast: dmosfast: δv th (MNND)=-0.139V δv th (MNND2)=-0.154V δl cap (MNTE, MNSE2)=-0.25µm depfast_dmosslow depslow_dmosslow depslow: dmosslow: δv th (MNND, MNND2)=0.243V δl cap (MNTE, MNSE2)=0.32µm FastFast SlowFast FastFast: SlowFast: δv th (NMOS)=-3σ δt ox =-3σ δl int =-3σ δc j =-3σ δv th (NMOS)=3σ δv th (PMOS)=3σ δw int =+3σ δv th (PMOS)=3σ FastSlow SlowSlow SlowSlow: FastSlow: δv th (NMOS)=3σ δt ox =+3σ δl int =+3σ δc j =+3σ δv th (NMOS)=-3σ δv th (PMOS)=-3σ δ w int =-3σ δv th (PMOS)=-3σ Page 31

Model Sections 8 Monte Carlo Sections 4 sections with different distributions 4 no Parasitics sections (nopar) with neglect of: - (substrate) parasitic devices - voltage/current/power warnings - paramtests (geometry checks) Corresponding nopar sections speed up simulation by 25%. No section toggle required for nominal and Gaussian MC simulation 8 Corner Sections 4 corners for NMOS/PMOS speed 4 corners for leakage current of depletion MOS and slew rate of DMOS Performing Monte Carlo analysis issues an error. Page 32

Model Quality The SMART5 PCM comprises 194 measurements (ASM52). 143 of them can be re-simulated. PCM evaluations may serve as a testbench to quantify the model quality (w/o correlation and mismatch). 1. Does the nominal simulation reproduce the PCM Target? nom = Target 2. Does the mean value of the Monte Carlo simulation reproduce the nominal value? µ = nom 3. Does the standard deviation of the Monte Carlo simulation reproduce one third of the distance between the PCM Upper Spec Limit and the PCM Target (cpk=1)? 3 σ = -Target Page 33

Model Quality source: /MQ/-Docu Page 34

Model Quality Parameter Classification Vt MNLE2 G MNLE2 YY MM simu meas Ron MNLE2 MM Isat MNLE2 YY Target source: /MQ/-Docu Page 35

Conclusion PCM: not only Process Monitoring (TD), but also Device Monitoring (CAD) Recommended Usage of Monte Carlo Section nom with 100 runs for small circuits Monte Carlo Section unif2s3s_nopar with 100 runs for large circuits Corner Sections only if you know what you are doing (worst-worst case) Reproduction of Correlations Monte Carlo Section nom Monte Carlo Section unif, unif2s3s, speclimits Corner Sections To be discussed Benefits of Quarterly Monitoring? Device type coverage (SMART5 PCM: 41 of 75 types)? PCM measuring regions? PCM AC and Temp measurements needed? Page 36