The Pressure s On: Increased. Introduction. By Jason Butke Edited by Meagan Phelan

Similar documents
At the Midpoint of the 2008

A RETROSPECTIVE ON 10 YEARS OF MODELING HURRICANE RISK IN A WARM OCEAN CLIMATE

Comments by William M. Gray (Colorado State University) on the recently published paper in Science by Webster, et al

Regional Wind Vulnerability. Extratropical Cyclones Differ from Tropical Cyclones in Ways That Matter

The AIR Tropical Cyclone Model for India

The Role of PAGASA in Disaster Mitigation

THE NEW STORM SURGE MODULE IN AIR S U.S. HURRICANE MODEL

THE AIR SEVERE THUNDERSTORM MODEL FOR AUSTRALIA

(April 7, 2010, Wednesday) Tropical Storms & Hurricanes Part 2

Comments on: Increasing destructiveness of tropical cyclones over the past 30 years by Kerry Emanuel, Nature, 31 July 2005, Vol. 436, pp.

The AIR Tropical Cyclone Model for Mexico

Ahead of the Wave: The Change Coming to the Saffir-Simpson

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

AIRCURRENTS THE TOHOKU EARTHQUAKE AND STRESS TRANSFER STRESS TRANSFER

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

Hurricane Risk: Importance of Climate Time Scale and Uncertainty

Understanding Climatological Influences on Hurricane Activity: The AIR Near-term Sensitivity Catalog

Chapter 24 Tropical Cyclones

A Preliminary Climatology of Extratropical Transitions in the Southwest Indian Ocean

WSI Tropical MarketFirst

Bell Work. REVIEW: Our Planet Earth Page 29 Document A & B Questions

Exposure Disaggregation: Introduction. By Alissa Le Mon

The Atlantic Hurricane Database Reanalysis Project

Tropical Cyclone Hyperactivity in the Eastern and Central Caribbean Sea During the 2005 Atlantic Hurricane Season

Current Details from the Joint Typhoon Warning Center

SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES. Working Group: Phillipe Caroff, Jeff Callaghan, James Franklin, Mark DeMaria

Why the Atlantic was surprisingly quiet in 2013

Standardizing hurricane size descriptors for broadcast to the public

Some figures courtesy of: Chris Landsea National Hurricane Center, Miami. Intergovernmental Panel on Climate Change

Use the terms from the following list to complete the sentences below. Each term may be used only once.

Tropical Storm List

AIRCURRENTS: TRACKING THE 2012 ATLANTIC HURRICANE SEASON USING THE CLIMATECAST U.S. HURRICANE RISK INDEX

The AIR Bushfire Model for Australia

Outline of 4 Lectures

South Asian Climate Outlook Forum (SASCOF-6)

2) What general circulation wind belt is the place of origin for hurricanes? A) westerlies B) trade winds C) doldrums D) horse latitudes

Analysis of Fall Transition Season (Sept-Early Dec) Why has the weather been so violent?

Current Details from the Joint Typhoon Warning Center

SEASONAL ENVIRONMENTAL CONDITIONS RELATED TO HURRICANE ACTIVITY IN THE NORTHEAST PACIFIC BASIN

P2.57 Cyclone Yasi Storm Surge in Australia Implications for Catastrophe Modeling

The AIR Severe Thunderstorm Model for the United States

7B.1 An Overview of the International Best Track Archive for Climate Stewardship (IBTrACS) Michael C. Kruk* STG Inc., Asheville, North Carolina

AIRCURRENTS: EUROPEAN WINDSTORM MODELS: QUESTIONS YOU SHOULD ASK

1. Introduction. 2. Verification of the 2010 forecasts. Research Brief 2011/ February 2011

NOTES AND CORRESPONDENCE. What Has Changed the Proportion of Intense Hurricanes in the Last 30 Years?

Tropical Storms & Hurricanes Part 1. August 1992

11/19/14. Chapter 11: Hurricanes. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck

Global Wind Patterns

Initialization of Tropical Cyclone Structure for Operational Application

Weathernews Looks Back at 2015: A Year of Storms. Powerful Typhoons Occurred with Changing Patterns in El Niño Years

A spatial climatology of North Atlantic hurricane intensity change

The Effect of the North Atlantic Oscillation On Atlantic Hurricanes Michael Barak-NYAS-Mentors: Dr. Yochanan Kushnir, Jennifer Miller

The AIR Crop Hail Model for Canada

August Forecast Update for Atlantic Hurricane Activity in 2012

This Season s Reminder of

Improving Tropical Cyclone Guidance Tools by Accounting for Variations in Size

South Asian Climate Outlook Forum (SASCOF-12)

Wind: Global Systems Chapter 10

NW Pacific and Japan Landfalling Typhoons in 2000

Impacts of Climate Change on Autumn North Atlantic Wave Climate

Vertical Structure of Atmosphere

Colorado State University (CSU) Atlantic Hurricane Season Forecast

Monitoring and Prediction of Climate Extremes

Climate Outlook through 2100 South Florida Ecological Services Office Vero Beach, FL September 9, 2014

NHC Ensemble/Probabilistic Guidance Products

Colorado State University (CSU) Atlantic Hurricane Season Forecast

Current Details from the National Hurricane Center (NHC)

Issued by the: Climate Services Division Fiji Meteorological Service Nadi Airport. 27 October 2010 GENERAL STATEMENT

Ch. 11: Hurricanes. Be able to. Define what hurricane is. Identify the life and death of a hurricane. Identify the ways we track hurricanes.

Climate Outlook for December 2015 May 2016

TSR TROPICAL STORM TRACKER LAUNCH

Evaluating a Genesis Potential Index with Community Climate System Model Version 3 (CCSM3) By: Kieran Bhatia

Global Climate Change and Human Health Cycloning out of Control: Climate Change Impacts on Natural Disasters; Cyclones

Careful, Cyclones Can Blow You Away!


Vertical wind shear in relation to frequency of Monsoon Depressions and Tropical Cyclones of Indian Seas

The Track Integrated Kinetic Energy of Atlantic Tropical Cyclones

Subtropical and Hybrid Systems IWTC VII Topic 1.6

Topic 3.2: Tropical Cyclone Variability on Seasonal Time Scales (Observations and Forecasting)

August Forecast Update for Atlantic Hurricane Activity in 2016

Why There Is Weather?

Tuesday, September 13, 16

THE IMPACT OF SATELLITE-DERIVED WINDS ON GFDL HURRICANE MODEL FORECASTS

AnuMS 2018 Atlantic Hurricane Season Forecast

Outlook 2008 Atlantic Hurricane Season. Kevin Lipton, Ingrid Amberger National Weather Service Albany, New York

Verification of the Seasonal Forecast for the 2005/06 Winter

2016 Hurricane Season Preview

Best track data of tropical cyclonic disturbances. over the north Indian Ocean. Regional Specialised Meteorological Centre (RSMC) -

16D.3 EYEWALL LIGHTNING OUTBREAKS AND TROPICAL CYCLONE INTENSITY CHANGE

TC STRUCTURE GUIDANCE UPDATES

Chapter 12: Meteorology

AnuMS 2018 Atlantic Hurricane Season Forecast

A Hurricane Outlook for the 21st Century.

11A.3 The Impact on Tropical Cyclone Predictions of a Major Upgrade to the Met Office Global Model

FORECAST OF ATLANTIC SEASONAL HURRICANE ACTIVITY AND LANDFALL STRIKE PROBABILITY FOR 2018

ESCI 1010 Lab 7 Hurricanes (AKA: Typhoons, Cyclones)

Modeling Great Britain s Flood Defenses. Flood Defense in Great Britain. By Dr. Yizhong Qu

3/5/2013 UNCERTAINTY IN HURRICANE FREQUENCY: HOW MODELERS APPROACH THE PROBLEM PROBLEM STATEMENT

EL NIÑO/LA NIÑA UPDATE

Quiz 2 Review Questions

Transcription:

The Pressure s On: Increased Realism in Tropical Cyclone Wind Speeds through Attention to Environmental Pressure 01.2012 By Jason Butke Introduction Because the Earth has a tilted axis and rotates, the sun differentially heats the surface. This results in thermal imbalances and therefore pressure imbalances (all else equal, the warmer the air, the lower the pressure) between the equator and the poles. The atmosphere attempts to equalize these imbalances through wind. The strength of the wind is proportional to the strength of the pressure gradient; the more severe the gradient, the stronger the wind. Tropical cyclones operate in much the same way, if on a much smaller scale. The difference between the higher atmospheric pressure outside the storm (the environmental pressure) and the lower pressure at the storm s center (central pressure) causes air to flow from the periphery to the eye that is, from higher to lower pressure zones. The bigger the difference termed the pressure deficit the stronger the winds; that is, the more intense the storm. This suggests that it is not only low central pressure that translates to strong winds, it is also high peripheral pressure. Indeed, the typical formula that relates maximum wind speed to pressure takes the form: Here,V max is the maximum wind speed; the term in parentheses is the pressure deficit, P Env where is the environmental pressure (in millibars) P c and is the central pressure (also in mb); C and n are empirical constants. Interestingly, central pressure whether estimated from satellite measurements, reconnaissance flights or direct observation is a more reliable measure of tropical cyclone intensity than direct estimates of wind speed because both the number and magnitude of potential errors when measuring central pressure are lower (see sidebar, Wind Speed is Hard to Measure). Wind-pressure relationships like the one above are used in real time, particularly in basins like the Pacific and Indian where reconnaissance data is sparse. But they are also used in many parametric catastrophe models, including the AIR tropical cyclone models. Their accuracy and realism are therefore of critical importance.

The concept of pressure deficits causing wind has long been understood. But while the measurement of central pressure is relatively straightforward, new efforts are being made to objectively measure environmental pressure. Several different definitions are shown in Table 1. The first three those of Wang, Holland, and Courtney and Knaff are based on the sea level pressure at a storm s outermost closed isobar (OCI), or lines of equal pressure as shown in dark red in Figure 1. These rely on synoptic weather maps, the limitations of which are discussed in the next section. In contrast, Knaff and Zehr define environmental pressure as the average sea level pressure at a fixed distance from the storm center. definition, this translates to an environmental pressure of 1004 to 1007 mb (see note to Table 1), while it translates to 1008 mb using the Holland definition, and to 1006 mb using that from Courtney and Knaff. In the context of a wind-pressure relationship and, in turn, in the context of a catastrophe model s damage estimates, such differences can lead to very different results, as we explain later. Wind Speed is Hard to Measure For tropical cyclones, particularly intense ones, the maximum wind speed is difficult to measure given the highly variable nature of the eyewall region where the strongest winds are located. Conversely, the eye where central pressure is measured is at the center of the tropical cyclone and is easy to locate for pressure measurement purposes. Table 1. Some Definitions of Environmental Pressure Wang (1987) OCI* Holland (1980) 1st isobar beyond OCI Courtney and Knaff (2009) Knaff and Zehr (2007) OCI + 2 mb 800-1000 km from storm center *Note that Wang defines P Env as the outermost closed isobar (OCI) at the 1 mb contour interval. However, synoptic maps typically have a 4 mb contour interval, yielding a 3 mb uncertainty in determining P Env from available maps. Thus, if the OCI as read on the synoptic map is 1004 mb, P Env according to Wang is 1004-1007 mb. Synoptic Weather Maps Synoptic weather maps detail the current weather at the regional scale. Given a quick look at a synoptic weather map, a meteorologist could identify the OCI, thereby determining the environmental pressure. In the synoptic map for Hurricane Gustav (2008) shown in Figure 1, the outermost closed isobar is 1004 millibars. Using Wang s Figure 1. Surface analysis for Hurricane Gustav (2008) from September 01 at 12 UTC. The isobars are shown in dark red. The green arrow points to the outermost closed isobar. (Source: National Weather Service s Hydrometeorological Prediction Center). Reanalysis Data Recently, scientists have proposed alternative ways to quantify environmental pressure using reanalysis data which is the output from a numerical weather prediction model that assimilates observational storm data every six hours. Global reanalysis data allows them to analyze this variable for large numbers of storms across basins. Such a process, which does not rely on the availability of synoptic weather maps, is ideal for building tropical cyclone climatologies used in catastrophe models. Examples are shown in Figure 2. While the resolution of the reanalysis data is not sufficiently high to represent the true central pressure of topical cyclones, it is sufficient for analyzing environmental pressure. 2

Following Knaff and Zehr s method, AIR analyzed global reanalysis data from the NCEP/NCAR Reanalysis Project (NNRP), which spans more than sixty years. (By comparison, Knaff and Zehr analyzed just fifteen years, beginning in 1989). Specifically, AIR calculated the average sea level pressure at various fixed distances from the storm center. This was done for all 6-hourly storm centers in the six ocean basins that generate tropical cyclones. Figure 2. Example of reanalysis data for (clockwise from top left) Hurricanes Opal (1995), Wilma (2005), Ike (2008), and Gustav (2008) (Source: Earth Systems Research Laboratory) Results using Knaff and Zehr s methodology are provided in the right-most column of Table 2 for a select set of U.S. landfalling hurricanes. Also shown are results from an analysis of synoptic maps using the formulations of Wang, Holland, and Courtney and Knaff. The results from the Knaff and Zehr-based strategy are generally higher than the results based on synoptic maps. This may indicate that the fixed distance of 800 to 1000 km from storm center may be too large at least for some basins. Table 2. Comparison between environmental pressure estimates as determined using four different methods for eight historical U.S. landfalling hurricanes (Source: AIR) Method Used Storm Year Time Wang Holland Courtney and Knaff and Zehr Knaff Bob 1985 July 25 06z 1012-1015 1016 1014 1017 Opal 1995 Oct 05 00z 1000-1003 1004 1002 1005 Isabel 2003 Sept 18 18z 1012-1015 1016 1014 1019 Wilma 2005 Oct 24 06z 1004-1007 1008 1006 1010 Humberto 2007 Sept 13 00z 1012-1015 1016 1014 1014 Dolly 2008 July 24 00z 1004-1007 1008 1006 1011 Gustav 2008 Sept 01 12z 1004-1007 1008 1006 1011 Ike 2008 Sept 13 06z 1004-1007 1008 1006 1008 Table 3. Average environmental pressure values, by ocean basin, calculated by AIR using the published method by Knaff and Zehr (2007) Basin PEnv North Atlantic 1014.1 Northwest Pacific 1008.3 South Pacific 1008.1 North Indian 1006.5 South Indan 1010.6 East Pacific 1008.8 The Impact of Variable Storm Size on Environmental Pressure Although the distance from the center of any storm to the outer closed isobar varies over its lifetime, using the fixed distance approach is preferred to the synoptic weather map technique; synoptic maps may not be readily available for all regions or over sufficiently long time periods. Additionally, without a fixed distance, standardized comparisons of environmental pressure from basin to basin are not possible. 3

Radius (km) 500 400 300 200 100 Nevertheless, although Knaff and Zehr advocate the use of 800 to 1000 km from storm center to determine environmental pressure, this may not be appropriate for all basins as was noted before. In particular, such a distance may be too large for ocean basins in which storms are smaller. Work from Chavas and Emanuel (2010) shows that tropical cyclones in the Northwest Pacific are, on average, larger than storms in any other basin. Indeed, they are approximately 25% larger than North Atlantic storms (Figure 3). All Radius of 12 m/sec winds Radius of vanishing winds Atlantic East Pacific West Pacific Indian Ocean Southern Hemisphere Figure 3. A comparison between the radius of vanishing winds and the radius of 12 m/s winds for storms worldwide reveals that mean storm size varies by basin systematically. Note: Vanishing winds are those winds at the edge of the storm circulation (from Chavas and Emanuel, 2010). Similarly, analyses of storms in the Northwest Pacific and North Atlantic basins demonstrate that the radius of gale and storm-force winds are 82% and 13% larger, respectively in the Northwest Pacific (Japan Meteorological Agency and Demuth et al., 2006). Because techniques vary between these datasets, there is uncertainty in the results. Nonetheless, they do independently confirm that the fixed distance strategy should vary by basin. In short, the tendency for storm size to vary by basin must be accounted for in order to accurately determine the environmental pressure variable for use in a wind-pressure relationship. The Impact of Latitude on Environmental Pressure Environmental pressure is also contingent on latitude; higher latitudes are generally characterized by colder temperatures and thus higher environmental values (Figure 4). Figure 4. Latitude dependence of environmental pressure for all ocean basins with tropical cyclone activity. At higher latitudes (>30 ), the environmental pressure increases for all basins except the Northwest Pacific. Note that with the Southwest Pacific and South Indian, the latitude bins are negative and the > and < signs reversed. The Northwest Pacific is an exception. The negative correlation between latitude and environmental pressure here may be caused by the basin s proximity to the InterTropical Convergence Zone (ITCZ), a region of low pressure that moves north in the summer months and south during the winter (Figure 5). Storms that form or track near the ITCZ have lower environmental pressures than storms that form or track farther away. Because storm genesis in the Northwest Pacific continues to occur throughout the winter months an inactive period in most other basins it occurs farther from the ITCZ. This, and the fact that colder months are characterized by higher environmental pressure generally (see callout on Seasonality), may drive the higher environmental pressure values in the Northwest Pacific even at low latitudes. July ITCZ January ITCZ Figure 5. Seasonal location of the InterTropical Convergence Zone (ITCZ), a lowpressure system that moves north in summer and south in winter. (Source: AIR) 4

The Importance of Environmental Pressure in Catastrophe Modeling Because environmental pressure changes with basinspecific factors like those discussed above, it is important to identify basin-specific wind-pressure relationships for use in catastrophe models. Changes of even a few milibars in estimates of environmental pressure can have a significant impact on the accuracy of wind speed estimates for a particular basin, especially considering that the wind speeddamage relationship is quasi-exponential. Consider the simplest case of creating a basin-specific tropical cyclone model with a basin-specific environmental pressure value of 1008 millibars versus using the standard global average atmospheric pressure of 1013 millibars. Using a wind-pressure relationship of the form Vmax = C(PEnv Pc)n, where n is set to 0.5 and C is arbitrarily set to 15.0, it is evident that the largest differences in wind speed associated with using one environmental pressure value versus the other would result for weaker storms (those with lower wind speeds). This is because at lower wind speeds, central pressure is higher and thus closer to the PEnv value; any incremental change in PEnv at this stage can have a large impact on the pressure deficit. The impact diminishes for more intense storms (where central pressure is lower) because the relative change in the pressure deficit diminishes. Figure 6. Impact on wind speed of using the standard (globally averaged) atmosphere (blue) and a basin-specific environmental pressure value for the Southwest Pacific (red). The wind speed difference is shown in green (Source: AIR). By utilizing basin-specific environmental pressures in windpressure relationships, the AIR tropical cyclone models ensure reliable estimates of tropical cyclone wind speeds and therefore reliable estimates of loss. In the case of historical events, using storm-specific values is a better practice than assuming a basin mean value. And it should be noted that in analyzing and estimating losses for events in real time, utilizing synoptic weather maps is the clearly preferred approach. 5

Footnotes 1 In reality, the relationship between central pressure and maximum wind speed is a function of storm motion, latitude, size, intensification trend, and environmental pressure, all of which vary in time and by event (Knaff and Zehr, 2007). As a result, the mean relationship between central pressure and maximum wind speed results in considerable scatter for any given wind-pressure relationship. References Chavas, D.R. and K.A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophysical Research Letters, 37, L18816, do1:10.1029/2010gl044558. Courtney, J. and J.A. Knaff, 2009: Adapting the Knaff and Zehr wind-pressure relationship for operational use in tropical cyclone warning centres. Australian Meteorological and Oceanographic Journal, 58, 167-179. Demuth, J., M. DeMaria, and J.A. Knaff, 2006: Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. Journal of Applied Meteorology, 45, 1573-1581. Holland, G., 1980: An analytical model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108, 1212-1218. Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone pressure wind relationships. Weather Forecasting, 22, 71 88. RSMC La Reunion: Tropical cyclone best track data set. [Available online at ftp://eclipse.ncdc. noaa.gov/pub/ibtracs/original-bt-data-files/reunion/wmo-best-tracks.txt]. RSMC Miami (HURDAT): Tropical cyclone best track data set. [Available online at http://www. aoml.noaa.gov/hrd/hurdat/tracks1851to2010_atl_reanal.html]. RSMC New Delhi (IMD): Tropical cyclone best track data set. [Available online at ftp://eclipse. ncdc.noaa.gov/pub/ibtracs/original-bt-data-files/newdelhi]. RSMC Tokyo (JMA): Tropical cyclone best track data set. [Available online at http://www.jma. go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttracks/bst_all.txt]. About AIR Worldwide AIR Worldwide (AIR) is the scientific leader and most respected provider of risk modeling software and consulting services. AIR founded the catastrophe modeling industry in 1987 and today models the risk from natural catastrophes and terrorism in more than 90 countries. More than 400 insurance, reinsurance, financial, corporate, and government clients rely on AIR software and services for catastrophe risk management, insurance-linked securities, detailed site-specific wind and seismic engineering analyses, agricultural risk management, and property replacement-cost valuation. AIR is a member of the Verisk Insurance Solutions group at Verisk Analytics (Nasdaq:VRSK) and is headquartered in Boston with additional offices in North America, Europe, and Asia. For more information, please visit www. air-worldwide.com. 2010 AIR Worldwide. All rights reserved. 6