Sinusoidal Response Notes

Similar documents
ECE 2210 / 00 Phasor Examples

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Announce. ECE 2026 Summer LECTURE OBJECTIVES READING. LECTURE #3 Complex View of Sinusoids May 21, Complex Number Review

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

2F1120 Spektrala transformer för Media Solutions to Steiglitz, Chapter 1

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

10. The Discrete-Time Fourier Transform (DTFT)

Chapter 10: Sinusoidal Steady-State Analysis

CSE 245: Computer Aided Circuit Simulation and Verification

Revision of Basic A.C. Theory

2. Background Material

ECE Circuit Theory. Final Examination. December 5, 2008

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS

0WAVE PROPAGATION IN MATERIAL SPACE

CHAPTER 10. Consider the transmission lines for voltage and current as developed in Chapter 9 from the distributed equivalent circuit shown below.

1 1 1 p q p q. 2ln x x. in simplest form. in simplest form in terms of x and h.

ANALYSIS IN THE FREQUENCY DOMAIN

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Things I Should Know Before I Get to Calculus Class

ECE 344 Microwave Fundamentals

Introduction to the quantum theory of matter and Schrödinger s equation

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

Chapter 3: Capacitors, Inductors, and Complex Impedance

Physics 160 Lecture 3. R. Johnson April 6, 2015

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Differentiation of Exponential Functions

2. Finite Impulse Response Filters (FIR)

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Chapter 2 Linear Waveshaping: High-pass Circuits

Complex representation of continuous-time periodic signals

Quasi-Classical States of the Simple Harmonic Oscillator

Electromagnetism Physics 15b

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

Sinusoidal Response of RLC Circuits

EEO 401 Digital Signal Processing Prof. Mark Fowler

Using Complex Numbers in Circuit Analysis Review of the Algebra of Complex Numbers

Handout 11: AC circuit. AC generator

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

REACTANCE. By: Enzo Paterno Date: 03/2013

A Propagating Wave Packet Group Velocity Dispersion

Single Phase Parallel AC Circuits

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

Hydrogen Atom and One Electron Ions

On the Hamiltonian of a Multi-Electron Atom

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

Chapter 3: Capacitors, Inductors, and Complex Impedance

EE292: Fundamentals of ECE

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

READING ASSIGNMENTS. Signal Processing First. Problem Solving Skills LECTURE OBJECTIVES. x(t) = cos(αt 2 ) Fourier Series ANALYSIS.

Chapter 10: Sinusoids and Phasors

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function

Finite element discretization of Laplace and Poisson equations

MSLC Math 151 WI09 Exam 2 Review Solutions

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B.

AC analysis - many examples

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Prelim Examination 2011 / 2012 (Assessing Units 1 & 2) MATHEMATICS. Advanced Higher Grade. Time allowed - 2 hours

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Coupled Pendulums. Two normal modes.

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

1973 AP Calculus AB: Section I

Design Guidelines for Quartz Crystal Oscillators. R 1 Motional Resistance L 1 Motional Inductance C 1 Motional Capacitance C 0 Shunt Capacitance

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

3 2x. 3x 2. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

AC analysis. EE 201 AC analysis 1

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/

Instructions for Section 1

DISCRETE TIME FOURIER TRANSFORM (DTFT)

6. The Interaction of Light and Matter

( ) = ( ) ( ) ( ) ( ) τ τ. This is a more complete version of the solutions for assignment 2 courtesy of the course TA

Addition of angular momentum

Solutions to ECE 2026 Problem Set #1. 2.5e j0.46

Sinusoidal steady-state analysis

5.80 Small-Molecule Spectroscopy and Dynamics

Prof. Shayla Sawyer CP08 solution

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

Chapter 33. Alternating Current Circuits

Lecture 3: Phasor notation, Transfer Functions. Context

Step Response Analysis. Frequency Response, Relation Between Model Descriptions

2. Laser physics - basics

1997 AP Calculus AB: Section I, Part A

Residence Times Difference (RTD) - Fluxgate Magnetometer A.A. 2007/2008

the output is Thus, the output lags in phase by θ( ωo) radians Rewriting the above equation we get

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters

The Matrix Exponential

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

1997 AP Calculus AB: Section I, Part A

Higher order derivatives

Sinusoidal Steady State Analysis

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

The Matrix Exponential

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

6.1 Introduction

If we integrate the given modulating signal, m(t), we arrive at the following FM signal:

Transcription:

ECE 30 Sinusoidal Rspons Nots For BIBO Systms AStolp /29/3 Th sinusoidal rspons of a systm is th output whn th input is a sinusoidal (which starts at tim 0) Systm Sinusoidal Rspons stp input H( s) output stp rspons X m x( y( y ss ( t + t t y tr ( t Sinusoidal Input Complt stp rspons stady-stat rspons + cos( ω u( t ) <> transint rspons Y( s ) X( s) H( s ) X m H( u( t ) + Y tr ( s) H( ω ) s sin( ω u( t ) <> Gnral sinusoidal input: X mc cos( ω t ) X ms ( sin( ω u( ) u( X( s ) Stady-Stat Rspons & H( X Y( s ) X( s) mc s X ms ω H( s ) H( s ) X mc s X ms ω partial fraction xpansion: Y( s ) H( s ) Complt sinusoidal rspons A s B ω + phasor-typ transfr function C ( ) b X mc s X ms ω D ( ) E ( ) + A s B ω C D E + s ( ) ( ) ( ) stady-stat rspons + transint rspons Y ss ( s ) + Y tr ( s) multiply both sids by: X mc s X ms ω H( s ) A s B C D E ω + ( ) ( ) ( ) st s ω X mc ω X ms ω H( ω ) A ω B C D E ω + 0 ( ) ( ) ( ) X( H( ω ) A ω B ω Y ss ( s ) stady-stat rspons in phasor form X( ω ) th input xprssd in phasor form H( ω ) th stady-stat sinusoidal transfr function phasor-typ transfr function Th transint part would b found by finishing th partial-fraction xpansion Sinusoidal Rspons Nots p

Stady-Stat Rspons by Phasors Exprssion of signals as phasors T Priod Sinusoidal Rspons Nots p2 f frquncy, cycls / scond f T ω 2 π ω radian frquncy, radians/sc ω 2 π f A amplitud t Phas: φ T 360 or: φ t T 2 π rad y( t ) A cos( ω t φ) Phasor voltag: v( t ) V p cos( ω t φ) V( ω ) V p φ Phas: currnt: i( t ) I p cos( ω t φ) I( ω ) I p φ Ex Lt's assum th input to your systm is v ( t ) 32 cos( ω t V ( ω ) 32 or: V ( ω ) 32V / o In rctangular form: or: 32 cos( 309 V 32 sin( 0828 V V ( ω ) ( 309 0828 ) V Ex2 What if a signal is th sum of two sinusoids v ( t ) 32 cos( ω t v ( v 2 ( t ) 4 sin( ω t 60 v 3 ( t ) v ( v 2 ( I'm going to drop th ( notation from th phasor notation, it gts cumbrsom, but rmmbr that phasors ar in th frquncy domain From Ex: V 32 V 32V / o V 309 +0828 V 4 3 2 2 3 4 v 2 ( tim Phasors ar basd on cosins, so xprss v 2 ( as a cosin Rmmbr: sin( ωt ) cos( ω t 90 So: v 2 ( t ) 4 cos( ω t 60 90 ) 4 cos( ω t 30 V 2 4V /-30 o or: V 2 4 V 30 4 cos( 30 3897 V 4 sin( 30 22 V V 2 3897 22 V \ } V 309 +0828 V / Add ral parts: 3897 309 6988 Add imaginary parts: 22 0828 422 Chang V 3 back to polar coordinats: 6988 2 422 2 73 atan 422 02 6988 OR, in Mathcad notation (you'll s ths in futur solutions): V 3 V 3 73 V arg V 3 V 3 ( ω ) 73V /- o or: V 3 ( ω ) 73 may also b convrtd back to th tim domain: v 3 ( t ) v ( v 2 ( t ) 73 cos( ω t V Sinusoidal Rspons Nots p2 V 3 V V 2 add V 3 6988 422 V sum drawing of th phasor diagram

Magnitud and Phas of transfr functions With stady-stat sinusoidal inputs Ex3 a) Find th magnitud and phas of th following transfr function at this frquncy: ω 2 rad sc H( s ) s ω H( ω ) 2 s 2 s 20 s 2 s 0 2 ( 2 ( 20 ( 2 sc ( ω ) 2 s 2 sc s 20 sc 2 s 2 sc s 0 sc 2 0 sc 2 Exprssd with propr units 20 2 ω 2 ( 0 ω 2 ( without units 20 2 2 2 ( 2) 0 2 2 ( 2) 2 0 6 2 H( 2 2 0 2 ω ) M 247 6 2 2 2 / H( atan 0 atan 2 237 2 6 b) Find th stady-stat sinusoidal output if th input is: 32 cos( 2 t V in 32 V 32V / o V outss ( ω ) V in ( H( ω ) 32 V 247 237 3 247 v outss ( t ) 74 cos( 2 t 3637 ( 237 3637 74 967 + 4394 V Ex4 a) Find th magnitud and phas of th following transfr function at this frquncy: f Hz ω 2 π f H( s ) s 2 20 sc s 000 sc 2 s 2 0 sc s 800 sc 2 s ω 342 rad sc H( ω ) ( 2 20 sc ( ω ) ( 2 0 sc ( ω ) 000 sc 2 800 sc 2 ( 342 ) 20 ( 342) 000 ( 342) 2 0 ( 342) 800 304 62839 49 09 8696 349 ω 342 rad sc without units H( ω ) M 49 2 09 2 72 / H( atan 09 49 39 b) Find th stady-stat sinusoidal output if th input is: x( t ) 4 cos( 2 π Hz X( ω ) 4 0 and thn Y( ω ) 4 ( 49 09 ) 836 364 Not that you can us th rctangular form of H( y( t ) 836 cos 342 rad sc t 364 sin 342 rad sc t not that th sin carris th opposit sign as th imaginary part 836 2 364 2 6878 atan 364 836 39 y( t ) 688 cos 342 rad sc t 32 Sinusoidal Rspons Nots p3

Impdancs sris: Z q Z Z 2 Z 3 + Exampl: Z q R C s L s Voltag dividr: V Zn V total Z n Z Z 2 Z 3 + paralll: Exampl: Z q + Z Z 2 Z 3 Currnt dividr: Z q R C s L s I Zn I total R C s Z n + Z Z 2 Z 3 L s Ex4 a) Find th stady-stat V R and v R ( givn v S ( is a 2 Vpp cosin wav at: f 2 khz b) Find th currnt: I 6 R L ( R 00 Ω V S ( ω ) 6 0 ω 2 π f ω L 80 mh Transfr function for V R as th output: H( s ) C 04 µf 0 I( s) V( s) C ( V R ( s) V S ( s) 266 rad sc R R L s V R ( ω ) R 6 V 666 2687 V V R 363V /-82 o R L ( C ( v R ( t ) 363 cos 266 rad sc t 82 Z( s) I( s ) V( s) Z( s) 6 V 00 0080 ( 266) s ω 266 rad sc 04 0 6 ( 266 ) 6 V magnitud: 6324 ma 9488 Ω angl: 0 82 82 I 6324mA /-82 o 6 V 00 003 989 C s 6 V 00 806366 00 2 806366 2 948802 atan 806366 00 898 c) Draw a phasor diagram of all th voltags V L I Z L 6324 ma 00 Ω 636 V 82 90 38 V L 636V / 38 o V C I Z C 6324 ma ( 99) Ω 28 V 82 ( 90) 38 V C -28V / 38 o 28V /-482 o Sinusoidal Rspons Nots p4

Sinusoidal Rspons Nots p L 2 mh Ex a) Find th stady-stat V C and v C ( givn v in ( is a 2 Vp cosin wav at: with a 20 o lading phas angl Transfr function for V C as th output: H( s ) H( s ) L s R L 2 s R L 2 s C s C s R L 2 s R L 2 s f 2 khz V C ( s) C s C s /\ V in C µf R 200 Ω L 2 8 mh L s R L 2 s C s V in 2 V 20 ω 2 π f ω 708 rad sc H( ω ) L ( R L 2 ( C ( 0002 ( 708 ) 200 0008 ( 708) 0 6 ( 708) 346 38 0 3 222 0 3 ( 00708) 0423 03 088 039 7 039 V C V in ( H( ω ) 20 2 V 7 039 2 7 / 20-039 o 204V / 896 o v c ( t ) 204 cos 708 rad sc t 896 a) Find th stady-stat I L2 and i L2 ( V C ( s) Transfr function for I L2 as th output: H( s ) I L2 ( s) R L 2 s V C ( s) R L 2 s H( s ) L s C s R L 2 s R L 2 s L s L s C s R L 2 s R L 2 s H( ω ) 249 0 3 4926 0 3 L ( ω ) L C ( 2 R L 2 ( R L 2 ( Ω 798 kω 438 I L2 V in ( H( ω ) 2 798 kω 20 438 2 798 kω / 20-438 o 8638mA / -238 o i L2 ( t ) 8638 ma cos 708 rad sc t 238 Sinusoidal Rspons Nots p

Sinusoidal Rspons Nots p6 Ex6 This systm: H( s ) s 20 s Has this input: x( t ) 4 sin( 2 t 40 u( a) Us stady-stat AC analysis to find th stady-stat output y ss ( t )? AC stady-stat H( H( 2 ) 2 20 2 2 2 20 2 2 2 2 atan 2 20 atan 2 23324 3 30964 6738 794 / 3646 X( ω ) 4 30 Not 90 o phas-lag bcaus it's givn as a sin wav Y ss ( ω ) 4 794 776 / 30 3646 6646 776 / 6646 y ss ( t ) 776 cos( 2 t 6646 b) Exprss th output, and sparat into 3 partial fractions that you can find in th laplac transform tabl without using complx numbrs Show what thy ar, but don't find th cofficints Find th input as a sum of a pur sin and cosin 4 sin( 30 3064 4 cos( 30 27 so: 4 sin( 2 t 40 u( t ) ( 3064 sin( 2 t ) 27 cos( 2 ) u( Y( s ) 3064 2 27 s s 2 44 ( s 20) ( s ) A s + B s s 2 44 + C 2 s 2 44 c) Continu with th partial fraction xpansion ust far nough to find th transint cofficint as a numbr ( 3064 2 27 s )( s 20 ) A s 2 44 + B s ( s ) + C 2 ( s ) lt s ( 3064 2 27 ( ) )( 20 ) A 2 44 + 0 + 0 A ( s 20 )( 3064 2 27 s) 2 44 A 4404 d) Exprss th complt (both transint and stady-sta output as a function of tim y( t )? 776 cos( 6646 697 776 sin( 6646 68 y( t ) 4404 t 776 cos( 2 t 6646 u( Eithr answr y( t ) 4404 t 697 cos( 2 t ) 68 sin( 2 u( ) What is th tim constant of th transint part this xprssion? τ? Sinusoidal Rspons Nots p6