ROMANIAN MATHEMATICAL SOCIETY

Similar documents
Soluţii juniori., unde 1, 2

Barem de notare clasa a V-a

Divizibilitate în mulțimea numerelor naturale/întregi

Procedeu de demonstrare a unor inegalităţi bazat pe inegalitatea lui Schur

Autor: Instituţia: Coordonator

ON THE QUATERNARY QUADRATIC DIOPHANTINE EQUATIONS (II) NICOLAE BRATU 1 ADINA CRETAN 2

SMT 2018 Geometry Test Solutions February 17, 2018

HANOI OPEN MATHEMATICS COMPETITON PROBLEMS

Nozha Directorate of Education Form : 2 nd Prep

SOLUTIONS SECTION A [1] = 27(27 15)(27 25)(27 14) = 27(12)(2)(13) = cm. = s(s a)(s b)(s c)

Collinearity/Concurrence

9 th CBSE Mega Test - II

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 133 Part 4. Basic Euclidean concepts and theorems

GAZETA MATEMATICĂ ARTICOLE ŞI NOTE MATEMATICE. SERIA B PUBLICAŢIE LUNARĂ PENTRU TINERET Fondată în anul Anul CXXI nr.

PROBLEME DIVERSE lecţie susţinută la lotul de 13 de Andrei ECKSTEIN Bucureşti, 25 mai 2015

TRIANGLES CHAPTER 7. (A) Main Concepts and Results. (B) Multiple Choice Questions


1.3. OPERAŢII CU NUMERE NEZECIMALE

HANOI OPEN MATHEMATICAL COMPETITON PROBLEMS

Teorema Reziduurilor şi Bucuria Integralelor Reale Prezentare de Alexandru Negrescu

The 2017 Danube Competition in Mathematics, October 28 th. Problema 1. Să se găsească toate polinoamele P, cu coeficienţi întregi, care

2007 Shortlist JBMO - Problems

ARTICOLE ŞI NOTE MATEMATICE

Triangles. 3.In the following fig. AB = AC and BD = DC, then ADC = (A) 60 (B) 120 (C) 90 (D) none 4.In the Fig. given below, find Z.

1. Prove that for every positive integer n there exists an n-digit number divisible by 5 n all of whose digits are odd.

ANSWERS. CLASS: VIII TERM - 1 SUBJECT: Mathematics. Exercise: 1(A) Exercise: 1(B)

Chapter 7. Geometric Inequalities

REGIONAL MATHEMATICAL OLYMPIAD-2010

Geometry Problem Solving Drill 08: Congruent Triangles

Question 1: In quadrilateral ACBD, AC = AD and AB bisects A (See the given figure). Show that ABC ABD. What can you say about BC and BD?

Triangle Congruence and Similarity Review. Show all work for full credit. 5. In the drawing, what is the measure of angle y?

Class IX Chapter 7 Triangles Maths

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle.

Concurrency and Collinearity

Class IX Chapter 8 Quadrilaterals Maths

Class IX Chapter 8 Quadrilaterals Maths

Class IX Chapter 7 Triangles Maths. Exercise 7.1 Question 1: In quadrilateral ACBD, AC = AD and AB bisects A (See the given figure).

Identities and inequalities in a quadrilateral

Probleme pentru pregătirea concursurilor

CONGRUENCE OF TRIANGLES

10! = ?

SOLUTIONS SECTION A SECTION B

Basic Quadrilateral Proofs

Class-IX CBSE Latest Pattern Sample Paper {Mathematics}

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch

0811ge. Geometry Regents Exam BC, AT = 5, TB = 7, and AV = 10.

RMT 2013 Geometry Test Solutions February 2, = 51.


NAME: Mathematics 133, Fall 2013, Examination 3

Visit: ImperialStudy.com For More Study Materials Class IX Chapter 12 Heron s Formula Maths

Olimpiada Matemática de Centroamérica y el Caribe

Exercise 10.1 Question 1: Fill in the blanks (i) The centre of a circle lies in of the circle. (exterior/ interior)

32 nd United States of America Mathematical Olympiad Recommended Marking Scheme May 1, 2003

CCE PR Revised & Un-Revised

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

Class IX - NCERT Maths Exercise (10.1)

INVERSION IN THE PLANE BERKELEY MATH CIRCLE

New aspects of Ionescu Weitzenböck s inequality

1 / 23

Number 8 Spring 2018

SOLUTIONS. x 2 and BV 2 = x

Mathematics. Mock Paper. With. Blue Print of Original Paper. on Latest Pattern. Solution Visits:

Class 7 Lines and Angles

2013 Sharygin Geometry Olympiad

Triangles. Chapter Flowchart. The Chapter Flowcharts give you the gist of the chapter flow in a single glance.

1998 IMO Shortlist BM BN BA BC AB BC CD DE EF BC CA AE EF FD

1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle?

THEOREMS WE KNOW PROJECT

O V E R V I E W. This study suggests grouping of numbers that do not divide the number

Geometry Honors Review for Midterm Exam

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

Q.1 If a, b, c are distinct positive real in H.P., then the value of the expression, (A) 1 (B) 2 (C) 3 (D) 4. (A) 2 (B) 5/2 (C) 3 (D) none of these

CBSE MATHEMATICS (SET-2)_2019

arxiv: v1 [math.gm] 29 Sep 2012

SHW 1-01 Total: 30 marks

0811ge. Geometry Regents Exam

A plane can be names using a capital cursive letter OR using three points, which are not collinear (not on a straight line)

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018.

CHAPTER 7 TRIANGLES. 7.1 Introduction. 7.2 Congruence of Triangles

IB MYP Unit 6 Review

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

2015 Canadian Team Mathematics Contest

About the Japanese theorem

Algebraic Expressions

1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT.

Postulates and Theorems in Proofs

UNCC 2001 Comprehensive, Solutions

Exercises for Unit I I (Vector algebra and Euclidean geometry)

1. The unit vector perpendicular to both the lines. Ans:, (2)

Paper: 03 Class-X-Math: Summative Assessment - I

UNC Charlotte 2005 Comprehensive March 7, 2005

81-E 2. Ans. : 2. Universal set U = { 2, 3, 5, 6, 10 }, subset A = { 5, 6 }. The diagram which represents A / is. Ans. : ( SPACE FOR ROUGH WORK )

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin

EXERCISE 10.1 EXERCISE 10.2

Math 3 Review Sheet Ch. 3 November 4, 2011

Day 6: Triangle Congruence, Correspondence and Styles of Proof

Properties of the Circle

Common Core Math 3. Proofs. Can you find the error in this proof "#$%&!!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!

Grade 6 Math Circles March 22-23, 2016 Contest Prep - Geometry

AREAS OF PARALLELOGRAMS AND TRIANGLES

Transcription:

ROMANIAN MATHEMATICAL SOCIETY Mehedinți Branch ROMANIAN MATHEMATICAL MAGAZINE R.M.M. Nr.20-2018 1 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

ROMANIAN MATHEMATICAL SOCIETY Mehedinți Branch DANIEL SITARU-ROMANIA EDITOR IN CHIEF ROMANIAN MATHEMATICAL MAGAZINE-PAPER VARIANT ISSN 1584-4897 GHEORGHE CĂINICEANU-ROMANIA DAN NĂNUȚI-ROMANIA EMILIA RĂDUCAN-ROMANIA MARIA UNGUREANU-ROMANIA DANA PAPONIU-ROMANIA GIMOIU IULIANA-ROMANIA ELENA RÎMNICEANU-ROMANIA DRAGA TĂTUCU MARIANA-ROMANIA DANIEL STRETCU-ROMANIA CLAUDIA NĂNUȚI-ROMANIA DAN NEDEIANU-ROMANIA GABRIELA BONDOC-ROMANIA OVIDIU TICUȘI-ROMANIA EDITORIAL BOARD ROMANIAN MATHEMATICAL MAGAZINE-INTERACTIVE JOURNAL ISSN 2501-0099 WWW.SSMRMH.RO DANIEL WISNIEWSKI-USA VALMIR KRASNICI-KOSOVO ALEXANDER BOGOMOLNY-USA EDITORIAL BOARD 2 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

CUPRINS Puncte coliniare.drepte concurente-ionică Constantin...4 A retrospective of the Ionescu-Nesbitt inequality- D.M.Bătinețu-Giurgiu,Daniel Sitaru,Neculai Stanciu... 10 About few inequalities in triangle-vasile Jiglău...14 Construction of some inequalities using Weierstrass theorem for compact sets Daniel Sitaru,Claudia Nănuți..18 On the problem 11984/American Mathematical Monthly/May 2017/Proposed by Daniel Sitaru Minimal and maximal bounds for the sum a 6 b 6 c 6 -Marius Drăgan,Neculai Stanciu........22 Some inequalities in four variables with sum 1 Ștefan Andrei Mihalcea...23 Some algebraic inequalities proved by using a Fermat-Toricelli s configuration Daniel Sitaru..24 About some famous inequalities-d.m.bătinețu-giurgiu, Daniel Sitaru...25 Proposed problems....32 Index of proposers and solvers RMM-20 Paper Magazine.. 80 3 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

PUNCTE COLINIARE. DREPTE CONCURENTE By Ionică Constantin-Romania Prin acest articol mi-am propus să vin în sprijinul pregătirii elevilor din clasele terminale de gimnaziu. Problemele de geometrie plană, care au ca cerință demonstrarea coliniarității unor puncte sau a concurentei unor drepte, cu un grad sporit de dificultate, ele fiind probleme de demonstrație care necesită raționamente precise și o gamă variată de tehnici specifice și solicită din partea elevului multă inventivitate și perspicacitate. Între problemele de coliniaritate și cele de concurentă există o strânsă legătură. Astfel, pentru a dovedi că dreptele a,b,c sunt concurente, se consideră că a b = {A} și punctele B, C c. Stabilirea concurentei celor trei drepte se reduce la a arăta că punctele A, B, C sunt coliniare. Pentru demonstrarea coliniarității unor puncte se pot folosi următoarele metode: P1. Demonstarea coliniarității folosind Axioma lui Euclid, care constă în următoarele: dacă dreptele BA și BC sunt paralele cu o dreaptă dată d, atunci punctele A, B, C sunt coliniare. P2.Demonstrarea coliniarității cu ajutorul unghiului alungit(unghiuri adiacente suplimentare). Această metodă constă în a utiliza rezultatul: dacă punctele A și C sunt situate de o parte și de a dreptei BD și dacă m( ABD) m( CBD) = 180, atunci punctele A, B, C sunt coliniare. P3.Demonstrarea coliniarității folosind rezultatul care afirmă că: dacă punctul B DE, iar A și C sunt de o parte și de alta a dreptei DE și ABD CBE, atunci punctele A, B, C sunt coliniare. (Reciproca teoremei unghiurilor opuse la vârf). P 4. Demonstrarea coliniarității folosind reciproca teoremei lui Menelaus. P 5. Demonstrarea coliniarității utilizând rezultatul care afirmă că: dacă punctele distincte B și C sunt situate de aceeași parte a dreptei AD și dacă DAB DAC, atunci punctele A, B, C sunt coliniare. P 6. Demonstrarea coliniarității utilizând identitatea AB BC = AC P 7. Demonstrarea coliniarității folosind rezultatul care afirmă: dintr-un punct exterior mai drepte se poate duce o perpendiculară și numai una pe acea dreaptă. Pentru demonstrarea concurentei a trei drepte se pot utiliza următoarele metode: Q 1.Demonstrarea concurenței folosind proprietățile liniilor importante în triunghi. Această metodă constă în a găsi un triunghi în care dreptele respective sunt sau înălțimi,sau mediane, sau bisectoare, sau mediatoare. Q 2. Demonstrarea concurenței utilizând reciproca teoremei lui Ceva. Q3. Demonstrarea concurenței folosind unicitatea mijlocului unui segment. Această metodă constă în următoarele: pe dreapta a se identifică punctele A și B, iar pe dreapta b se identifică punctele C și D astfel încât segmentele [AB] și [CD] să aibă același mijloc. 4 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

Q 4. Demonstrarea concurenței prin coliniaritate (așa cum s-a arătat la începutul paragrafului). Probleme care ilustrează metodele menționate 1. Punctul de intersecție al diagonalelor unui paralelogram se află pe dreapta ce unește mijloacele a două laturi opuse ale paralelogramului. Soluție: Fie paralelogramul ABCD, O punctul de intersecție al diagonalelor AC și BD, iar M și N mijloacele laturilor [AB] și [CD]. În Δ ABC, [OM] este linie mijlocie OM BC (1), iar în Δ BCD, [ON] este linie mijlocie ON BC (2). Din relațiile (1) și (2) M, O, N - coliniare (conform P ). 2. Fie Δ ABC dreptunghic în A, AD BC, D (BC), iar E și F simetricele punctului D față de AB, respectiv AC. Să se arate că punctele E, A, F sunt coliniare. Soluție: Din faptul că punctul E este simetricul lui D față de AB EAB BAD și F fiind simetricul lui D față de AC FAC CAD. Cum m( BAD) m( CAD) = 90 m( EAB) m( BAD) m( CAD) m( FAC) = 180 m( EAF) = 180 punctele E, A, F sunt coliniare (conform P ) 3. În rombul ABCD se consideră punctele M și N mijloacele segmentelor [AB], respectiv, [CD], iar punctul O este intersecția diagonalelor AC și BD. Să se arate că punctele M, O, N sunt coliniare. Soluție: ΔAOM ΔCON (LUL) AOM CON și cum A, O, C sunt coliniare M, O, N sunt coliniare (P ). 5 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

4. O dreaptă taie laturile BC, AC și AB ale unui ΔABC în punctele A, B respectiv C. Dacă punctele M, N, P sunt simetricele punctelor A, B, C față de mijlocul laturii pe care este situat fiecare, arătați că M, N, P sunt coliniare. Soluție: Cum punctele A, B, C sunt coliniare = 1 (Teorema Menelaus) Dacă D este mijlocul [BC] și M este simetricul lui A față de punctul D =. Analog pentru punctele E și F mijloacele segmentelor [AC], respectiv [AB], avem că: = și = = 1 M, N, P sunt coliniare conform reciprocei teoremei lui Menelaus (P ). 5. Fie punctul E interior pătratului ABCD și F exterior, astfel încât triunghiurile ABE și BCF să fie echilaterale. Să se arate că punctele D, E, F sunt coliniare. Soluție: [AD] [AE] Δ ADE este isoscel și cum m( DAE) = 30 m( ADE) = 75 m( CDE) = 15. Din [CD] = [CF] ΔDCF este isoscel și cum m( DCF) = 150 m( CDF) = 15 CDE CDF punctele D, E, F sunt coliniare (P ). 6. Fie ABCD un patrulater convex și punctul E așa încât C și E sunt de o parte și de alta a lui AB, iar triunghiurile ABE și ADC sunt asemenea. Să se demonstreze că punctele C, B, E sunt coliniare, dacă și numai dacă, are loc egalitatea: AB CD AD BC AC BD Soluție: Din asemănarea triunghiurilor ABE și ADC = și prin schimbarea mezilor. Cum CAE DAB (deoarece DAC BAE și BAC este unghi comun) = ΔEAC ΔBAD. Din ΔABE ΔADC = = BE =, iar din ΔEAC ΔBAD = = EC =. Punctele C, B, E sunt coliniare, dacă și numai dacă, CB BE = CE, adică CB = AB DC BC AD = AC BD (P ) 6 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

7. În trapezul isoscel ABCD fie O punctul de intersecție al diagonalelor, iar M și N mijloacele bazelor [AB], respectiv [CD]. Să se arate că M, O, N sunt puncte coliniare. Soluție: Din ΔAOB isoscel și [OM] mediană [OM] înălțime, adică OM AB (1). Analog ON CD (2). Din (1) și (2) și AB CD M, O, N sunt coliniare. (P ) 8. Pe catetele AB și AC ale triunghiului dreptunghic ABC(m( A) = 90 ) se construiesc în exterior pătratele ABFG și ACDE. Să se arate că dreptele BD și CF se intersectează pe înălțimea AH a triunghiului ABC. Soluție: Fie punctul I intersecția dreptelor DE și FG. Din Δ GAI ΔABC (c.c) GAI ABC CAH și cum G, A, C sunt coliniare I, A, H coliniare, deci I este situat pe înălțimea AH, adică IH BC. Cum Δ ABI Δ BFC (L.U.L) și AB BF, respectiv IA BC CF BI. Din Δ BED Δ IDC (c.c) și BE ID, respectiv ED DC BD IC. Prin urmare IH, BD și CF sunt înălțimi în Δ BIC sunt concurente într-un punct M(Q ). 9. Fie O punctul de intersecție al diagonalelor trapezului ABCD, E și F mijloacele bazelor AB și CD, iar G și H mijloacele diagonalelor AC și BD. Dacă I și J sunt simetricele punctului O în raport cu G și H, să se arate că dreptele EF, IH și GJ sunt concurente. Soluție: Cum I este simetricul lui O față de G [OG] [GI] și analog [OH] [HJ] [IH], [JG] sunt mediane în ΔOIJ [OK] este a treia mediană în ΔOIJ, deci EF, IH și GJ sunt concurente (Q ) 7 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

10. În vârfurile triunghiului ABC se duc tangentele la cercul circumscris lui și care formează triunghiul A B C. Dacă A 1, B 1, C 1 sunt centrele cercurilor înscrise în triunghiurile A BC, B CA și C AB, să se demonstreze că dreptele AA 1, BB 1, CC 1 sunt concurente. Soluție: Din A - centrul cercului înscris ΔA BC [BA este bisectoarea A BC A BC A BA A este mijlocul arcului BC [AA este bisectoarea BAC. Analog se arată că [BB și [CC sunt bisectoarele ABC, respectiv ACB, de unde rezultă concurența dreptelor AA, BB și CC (Q ) 11. Să se arate că perpendiculare duse din mijloacele laturilor unui triunghi pe laturile triunghiului ortic (format unind picioarele înălțimilor triunghiului dat), sunt concurente. Soluție: Fie AD BC, BE AC, CF AB, D [BC], E [AC], F [AB] și A, B, C mijloacele laturilor [BC], [CA], respectiv [AB]. Construim A M EF, C N ED și B P FD. În triunghiul dreptunghic BEC avem EA mediană relativă la ipotenuză EA =, iar triunghiul dreptunghic BFC avem [FA ] mediană relativă la ipotenuză FA = Δ A EF este isoscel și cum A M EF A M este mediatoarea laturii EF. Analog se arată că C N și B P sunt mediatoarele laturilor ED și FD dreptele A M, C N și B P fiind mediatoarele laturilor triunghiului DEF sunt concurente într-un punct Q. (Q ) 8 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

12. Pe cateta AC a triunghiului dreptunghic ABC se ridică în C perpendiculara [CC ] [AC], iar pe cateta AB se ridică perpendiculara [BB ] [AB]. Să se arate că dreptele BC și B C se întâlnesc pe înălțimea [AA ]. Soluție: Fie AB B C = {D} și AC C B = {E}. În ΔABC dreptunghic avem AB = BC CA și AC = BC CA = (1) cum ΔC CE ΔBAE (U.U) =, dar [CC ] [AC] = (2). Din ΔDAC ΔDBB (U.U) = și cum [BB ] [AB] = (3). Înmulțind membru cu membru relațiile (1), (2) și (3) avem = = 1 dreptele BC, CB și AA sunt concurente, conform reciprocei teoremei lui Ceva. (Q ) 13. Fie rombul ABCD cu AC diagonala mare și A 1, A 2, C 1, C 2 proiecțiile punctelor A și C pe laturile opuse. Să se demonstreze că dreptele A 1 C 1, A 2 C 2, AC și BD sunt concurente. Soluție:Cum AC A C, AA CC și m( A ) = 90 AA CC este dreptunghi A C trece prin mijlocul O a lui AC. Analog se arată că și A C trece prin mijlocul O a lui AC A C, A C, AC și BD sunt concurente (Q ) 14. Fie ABCD și AB C D două pătrate având laturile de aceeași lungime. Să se demonstreze că dreptele BB, CC și DD sunt concurente. Soluție : Fie BB CC = {P}; Δ BAB ΔDAD (L.U.L) ABB ADD m( CBP) m( CDP) = 180 PBCD este patrulater inscriptibil 9 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

m( CBP) = m( CDP) = 45 = m( CBD) = m( CPD). Cum ΔBAB este isoscel ABB AB B m( C D P) m( C B P) = 180 patrulaterul PB C D este inscriptibil m( C PD ) = m( C B D ) = 45 = = m( C D B ) = m( C PB ) CPD C PD și cum C, P, C sunt coliniare D, P, D sunt coliniare deci dreapta DD trece prin P, care este punctul de intersecție al dreptelor BB și CC BB, CC și DD sunt concurente. (Q ). A RETROSPECTIVE OF THE IONESCU-NESBITT INEQUALITY By D. M. Bătineţu-Giurgiu, Daniel Sitaru and Neculai Stanciu-Romania 1.Introduction In Romanian Mathematical Gazette, Volume XXXII (September 15, 1926 - August 15, 1927), at page 120 Ion Ionescu - one of the founders and pillars of Mathematical Gazette published the problem. 3478. If x, y, z are positive, show that: (*) In the same volume, at pp. 194-196, are presented two solutions to this problem, as well as a generalization. From [17] yields that Nesbitt published the inequality (1) in 1903.It is appropriate to say here that the problem. In any triangle ABC, with usual notations holds the inequality a 2 b 2 c 2 4 3S, (I-W), was published first by Ion Ionescu in 1897 (see [1]), and also published by Roland Weitzenböck in 1919. However, this inequality has long been called Weitzenböck s inequality, and after the appearance of paper [1] is called Ionescu-Weitzenböck inequality (IW) Compared to the above we suggest that inequality (*) to be called Nesbitt-Ionescu inequality. In the next, we will do a retrospective of our results on Nesbitt-Ionescu inequality and we shall give some generalizations of problem 752 from The Pentagon journal (see [19]). 2. Ionescu-Nesbitt type inequality for two variables 10 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

If x, x R, then: A(x 1, x 2 ) = x 1 x 2 2, (see for e.g. [7,12]) x 2 x 1 If a, b, x, x R, X = x x and ax > b max{x, x }, then: B(x 1, x 2 ) = 2 (see [7,12]) x 1 ax 1 bx 1 x 2 ax 2 bx 2 2ab 3. Ionescu Nesbitt type inequality for three variables C(x 1, x 2, x 3 ) = D(x 1, x 2, x 3 ) = If x, x, x R, then: x 3, (Nesbitt, 1903, see [17,12]). x 1 x 2 3 x 2 x 3 x 3 x 1 x 1 x 2 2 If a, b, x, x, x R, then: x 2 x 3 3, (see [4,12]). x 1 ax 2 bx 3 ax 3 bx 1 ax 1 bx 2 ab If a, b, x R, k = 1,3 and a b = a b = a b = t, then: x E(x 1, x 2, x 3 ) = 1 x 2 x 3, (see [4,12]). 3 a 1 x 2 b 1 x 3 a 2 x 3 b 2 x 1 a 3 x 1 b 3 x 2 t If a, b, x, x, x R, x x x = X and ax > b max{x, x, x }, then: F(x 1, x 2, x 3 ) = x 1 x 2 x 3 3, (see [4,12]). ax 3 bx 1 ax 3 bx 2 ax 3 bx 3 3ab G(x 1, x 2, x 3 ) = If a, b, x, x, x R, x x x = X, such that ax > b max{x, x, x } and m, p [1, ), then: x 1 m (ax 3 bx 1 ) p m x 2 (ax 3 bx 2 ) p m x 3 3mp1 X (ax 3 bx 3 ) p (3ab) p 3 mp, (see [4,12]). If a, b, x, x, x R, x x x = X and m R, then: x H(x 1, x 2, x 3 ) = 1 x 2 x 3 3 m (ax 3 bx 1 ) m (ax 3 bx 2 ) m (ax 3 bx 3 ) m (3ab) m X 3 m1, (see [4]). If a, b, c, x, y, z R, then: I(x, y, z) = ax y z by z x cz x y (ax by cz) 2 (a b)xy (b c)yz (c a)zx J(x, y, z) = N n = 3(abxybcyzcazx) (ab)xy(bc)yz(ca)zx x m1 (aybz) 2m1 (azbx) 2m1, (see [2,5]). If a, b, x, y, z R and m R, then: y m1 z m1 3 m1 (axby) 2m1 (ab) 2m1 (xyz) m, (see [3]). 4. Ionescu Nesbitt type inequality for n variables n x k k1 X n x k If x R, k = 1, n, X = x, then:, (see for e.g. [16], the case n = 4 and also [12]). n n1 If n N {1,2}, m, p [1, ), a, b, x R, k = 1, n, X = x, and ax > b max x, then: K n = n n x k k1 (ax n bx k ) p nmp1 (anb) p X n mp, (see [3]). 11 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

If a, b, x R, c, y R, k = 1, n, n N {1}, X = x and ax > b max x, y 0, X, k = 1, n and m R, then: L n = m1 n x k k1 (ax n bx k cy k ) 2m1 n m1 (anbc) 2m1 X n m, (see [3]). If n N {1,2}, x R, b, c, d, x R, k = 1, n, X = x, and cx > d max x, then: M n = n ax n bx k k1 cx n dx k (anb) n, (see [6] and [18]). cnd If a R, b, c, d, x R, k = 1, n, X = x, m [1, ) and cx > d max x, then: U n = n ax n bx k k1 cx m n dxm k (anb)nm cn m d X n 1m, (see [8] and also [11]). If a, m R, b, c, d, x R, k = 1, n, X = x, p [1, ) and cx > d max x, then: V n = n ax n bx k k1 cx m n dx m k p (anb)nmp X 1mp (cn m d) p n, (see [9]). If n N {1}, a R, b, c, d, x R, k = 1, n, X = x, m, p, r, s [1, ), such that cx > d max x, then: W n = ax r r s n n bx k k1 cx m n dx m k p (anr b) s (cn m d) p nmprs1 X n rsmp, (see [10,13]) If n N {1}, m, p R, x R, k = 1, n, and we denote X, = x, X, = x, then: Y n = m n x k k1 p X n,p x k n n1 X n,m X n,p, (see [15]). If n N {1}, a R, b, c, d, m, p R, x R, k = 1, n, X, = x, X, = x, such that c X, > d max x, then Z n = m n a X n,m b x k k1 p c X n,p d x k n (anb) cnd X n,m X n,p, (see [15]). If n N {1}, a, v R, b, c, d, m, p R, x R, k = 1, n, t [1, ), X, = x, X, = x, such that c X, > d max x, then m t n a X n,m b x k k1 p v c X n,p d x k nvt (anb) t cnd X n,m t Xv n,p, (see [14]). See also [16]. New results: If a R and b, c, d, x, y, z R, X = x y z, cx > d max{x, y, z}, then: 12 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

ax bx 3(3a b) cx dx 3c d. cyc If a R, m [1, ) and b, c, d, x, y, z R, X = x y z, cx > d max{x, y, z}, then ax bx (cx dx) m ax by (cx dy) m ax bz (cx dz) m 3m (3a b) (3c d) m X m1. If a, m R and b, c, d, x, y, z R, X = x y z, CX > d max{x, y, z}, then: m1 m1 m1 ax bx cx dx ax by cx dy ax bz cx dz 3(3a b)m1 (3c d) m1. If n N {1}, a R = [0, ), b, c, d, x R = (0, ), k = 1, n, X = x and X > d max x, then n ax n bx k (an b)n cx n dx k cn d. k1 If n N {1}, a, m R = [0, ), b, c, d, x R = (0, ), k = 1, n, X = x and cx > d max x, then n (ax n bx k ) m1 (cx n dx k ) 2m1 k1 (an b)m1 n m1 (cn d) 2m1 X n m For proofs of the above results we used the following inequalities: The inequality of H. Bergström is If x k R, y k R, k = 1, n, n N {1}, then 2 n x k k1 n k1 x k 2 y k n k1 y k The inequality of J. Radon is If x k R, y k R, k = 1, n, n N {1}, m R, then n x k m1 m ( n k1 x k) m1 y k1 k n k1 y k m References: [1] Bătineţu-Giurgiu, D.M., Stanciu, N., Inegalităţi de tip Ionescu-Weitzenböck, Gazeta Matematică, 118(1), 2013. [2] Bătineţu-Giurgiu, D.M., Stanciu, N., O extindere şi o rafinare a inegalităţii lui Nesbitt, Articole și Note Matematice, 4(1), 2011. [3] Bătineţu-Giurgiu, D.M., Stanciu, N., Noi generalizări ale inegalității lui Nesbitt Articole și Note Matematice, 4(1), 2011. [4] Bătineţu-Giurgiu, D.M., Bencze, M., Stanciu, N., New generalizations and new approaches for Nesbitt s inequality, Mathematical Education in the Current European Context, 2(1), 2011. [5] Bătineţu-Giurgiu, D.M., Stanciu, N.,O extindere şi o rafinare a inegalităţii lui Nesbitt, R.M.T., 91(1), 2012. [6] Bătineţu-Giurgiu, D.M., Stanciu, N., Încă patru demonstraţii ale problemei L:155 din Sclipirea minţii nr. VII 2011, Sclipirea Minţii, 5(9), 6, 2012. [7] Bătineţu-Giurgiu, D.M., Stanciu, N., Inegalitatea lui Nesbitt, Didactica Matematică, 2(1), 2012. [8] Bătineţu-Giurgiu, D.M., Stanciu, N., A generalization of some remarkable inequalities, Experienţe Utile în Predarea-Învăţarea Matematicii, 1(1), 2012. 13 ROMANIAN MATHEMATICAL MAGAZINE NR. 20.

[9] Bătineţu-Giurgiu, D.M., Stanciu, N., Problem 11634, The American Mathematical Monthly, 119(3), 2012. [10] Bătineţu-Giurgiu, D.M., Stanciu, N., Nuevas generalizaciones y aplicaciones de la desigualdad de Nesbitt, Revista Escolar de la Olimpiada Iberoamericana de Matematicá, 11(47), 2012. [11] Bătineţu-Giurgiu, D.M., Stanciu, N., Generalizations of some remarkable inequalities, The Teaching of Mathematics, 16(1), 2013. [12] Bătineţu-Giurgiu, D.M., Stanciu, N., About Nesbitt s inequality, Octogon Mathematical Magazine, 20(2), 2012. [13] Bătineţu-Giurgiu, D.M., Stanciu, N., New generalizations and new applications for Nesbitt s inequality, Journal of Science and Arts, 12(4), 2012. [14] Bătineţu-Giurgiu, D.M., Stanciu, N., A New generalization of Nesbitt s inequality, Journal of Science and Arts, 13(3), 2013. [15] Bătineţu-Giurgiu, D.M., Stanciu, N., Zvonaru, T., Generalizarea problemei VIII. 169 din RecMat nr. 2/2013, Recreaţii Matematice, 15(1), 2014. [16] Bătineţu-Giurgiu, D.M., Stanciu, N., Una nota sobre una desigualdad de Nesbitt- Ionescu, Revista Escolar de la Olimpiada Iberoamericana de Matematica, Numero 53, Julio-Diciembre, 2015. [17] Nesbitt, A.M., Problem 15114, Educational Times, 3(2), 1903. [18] Zvonaru, T., Stanciu, N., Şase soluţii pentru problema L:155 din Sclipirea Minţii, nr. VII, 2011, Sclipirea Minţii, 4(8), 2011. [19] Problem 725, The Pentagon, Fall 2014, p. ABOUT FEW INEQUALITIES IN TRIANGLE By Vasile Jiglău Romania In an arbitrary triangle ABC denote by l, m, h respectively the lengths of the internal anglebisector, the median and the altitude corresponding to the side a = BC of triangle. Prove that: h2 l 2 b a h2 l 2 c b a. l a 2 h2 m 2 b 2 m 2 c a h b b. m a 2 h c 2 2 l a h c 2 2 m a l b l c h a h b h c 1. m b m c h a h b h c 1 c. explain why each of a. and b. are equivalent to the fundamental inequality of the triangle. Proof: We ll prove that each of the two inequalities from enunciation is equivalent to the fundamental inequality of the triangle. Denote by a, b, c the sides of the given triangle and by x = p a, y = p b, z = p c (1) The sums and the products which will be used below will be cyclic. a. Using the well-known formulas which give the lengths of the angle-bisector and the altitude corresponding to the side a = BC, one obtain: l a 2 h2 = 4bcp(pa) a (bc) 2 a2 = 4R a(pa) 4S 2 r (bc) 2 (2) and by summation 14 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

l a 2 h a 2 = 4R r a(pa) (bc) 2 = 4R r x(yz)(xy2z)(x2yz) (bc) 2 (3) Using (2), one obtain immediately that l a h a = 16R2 p (bc) (4) Denote the numerator of (3) by U = x(y z)(x y 2z)(x 2y z) and the denominator of (3) by V = (b c) = (2x y z). The inequality from enunciation becomes equivalent to: 4R r U (b c) 32R p (b c) 1 4RU 32R rp (b c) r (b c) 4RU 32R 2 rpv rv 2 (5) Let s write U and V as functions of R, r, p a.let s first write U as function of the fundamental symmetric polynomials of x, y, z. The following identity can be easily verified: U = 5( x) 4 ( xy) 19xyz(x) 3 2(x) 2 ( xy) 2 3xyz( x)( xy) 3x 2 y 2 z 2 (6) The proof is given in the annex. Using (6), let s write U as function of R, r, p, applying the following: x = (p a) = p, xy = (p a)(p b) = r(4r r), xyz = (p a) = pr We obtain: U = 5p 2 4Rr r 2 19p 4 r 2 2p 2 4Rr r 2 2 3p 2 r 2 4Rr r 2 3p 2 r 4 = p 2 rp 2 (20R 24r) 32R 2 r 28Rr 2 8r 3 (7) 2. Let s now write V = (b c) as function of R, r, p. We have: (b c) = ( a)( ab) abc = 2pp 2 r 2 4Rr 4Rrp = 2pp 2 r 2 2Rr (8) (we have used the known identity ab = p r 4Rr) Taking into account (7) and (8), it results that (5), and as consequence the inequality from enunciation, become equivalent to: 4Rrp [p (20R 24r) (32R r 28Rr 8r )] 64R rp (p r 2Rr) 4rp (p r 2Rr) which becomes, after computation, equivalent to: p p (4R 20Rr 2r ) r(4r r) 0 which is the fundamental inequality of the triangle, because p p (4R 20Rr 2r ) r(4r r) = E E, where: 15 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

E = p 2R 10Rr r 2R(R 2r) 0 E = p 2R 10Rr r 2R(R 2r) 0 b. The inequality from enunciation is equivalent to: m2 a h2 m 2 b a h2 m 2 c b h2 c 1 2 4 m a h2 m 2 b a h2 m 2 c b h c 2 1 2 (9) Using the formula m =, one can easily verify the (known) identity: m h 1 = (b c ) 16S m h 1 = (b c ) 16S Denote by: = u, m h 1 = (c a ) 16S = v, m h 1 = (a b ) 16S = w Then u, v, w are obviously positive, and (9) becomes equivalent to: 4(u 1)(v 1)(w 1) (u v w 2) 4uvw 4(uv vw wu) 4(u v w) 4 (u v w 2uv 2vw 2wu) 4(u v w) 4 4uvw 2(uv vw wu) u v w 4uvw [2(uv vw wu) u 2 v 2 w 2 ] 0 (11) We see that the above right parenthesis equals zero, because: 2(uv vw wu) u v w = 0 2 (a b ) (a c ) (a b ) = 0 identity which can be easily verified by computation. In fact, from Heron s identity: 2(x y y z z x ) x y z = = (x y z)( x y z)(x y z)(x y z) it results that the polynomial 2(x y y z z x ) x y z is divisible by x y z, so 2 (a b ) (a c ) (a b ) is divisible by (a b ) (b c ) (c a ) = 0; the conclusion is the same, so (11) is equivalent to 4uvw 0, which is true, then (9) is true, too. Because uvw 0 is equivalent to the fundamental inequality (see [1] pag. 3), it results that this second inequality from the enunctiation of the problem is equivalent to the fundamental inequality of the triangle. From here, the equalities in a. and b. hold for the isosceles triangles (wide or tall isosceles, see [2], theorem 1) 16 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

c. it results immediately from the above solutions. Remark: I added this last point because it can exist several proofs both for a. and for b. I found one for each of the two and I wanted to emphasise the equivalence with the foundamental inequality. Reference: [1] D. Mitrinovic, s.a. Recent advances in geometric inequalities [2] T. Barsan Bounds for elements of a triangle expressed by R, r, p, Forum Geometricum, 2015, p. 99-103. Annex the proof of (6) U = x(y z) (x y 2z)(x 2y z) = x(y z)[(x y z) z][(x y z) y ] = x(y z) x (y z) x yz = x(y z) x (y z) x y z 2(y z) x 2yz x 2yz(y z) x and after the multiplication of x(y z) with the terms of the right parenthesis, we obtain: U = A B C D E F, where: A = x(y z) x = 2 xy x B = x(y z) x = x x(y z) = x [x(x y z x) ] = 2 x xy x xy 5xyz x C = xyz yz (y z) = xyz x xy 3xyz = xyz x xy 3x y z D = 2 x x(y z) = 2 x x xy 3xyz = = 2 x xy 6xyz x E = x(y z) 2yz x = 4xyz x F = x(y z) 2yz(y z) x = 2xyz x (y z) = = 4xyz x x xy = 4xyz x 4xyz x xy 17 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

It results: U = 2 x xy 2 x xy x xy 5xyz x xyz x xy 3x y z 2 x xy 6xyz x 4xyz x 4xyz x 4xyz x xy = 5 x xy 19xyz x 2 x xy 3xyz( x)( xy) 3x y z (6) CONSTRUCTION OF SOME INEQUALITIES USING WEIERSTRASS S THEOREM FOR COMPACT SETS By Daniel Sitaru, Claudia Nănuți-Romania Abstract: In this article we show a construction method of some inequalities using Weierstrass s theorem. Weierstrass Theorem.The compactness is preserved by continuous functions, i.e. the image of the compact space under a continuous mapping is also compact. A subset of the real line is compact if and only if it is both closed and bounded. This implies the following generalization of the extreme value theorem: a continuous real-valued function on a nonempty compact space is bounded above and attains its supremum. Corollary 1. Let be a > 0, K = [0, a] [0, a]; f: K R a continuous function. If f is strictly convex in each variable (when the others one is fixed) then f touches its maximum in one of the vertices of K square (because the square s sides are parallel with the axes). max f = max{f(0,0); f(a, 0); f(0, a); f(a, a)} (see [4]) Corollary 2. Let be a > 0; K = [0, a] [0, a] [0, a]; f: K R a continuous function. If f is strictly convex in each variable (when the others are fixed) then f touches its maximum in one of the vertices of the cube (because the cube s sides are parallel with the axes). f(0,0,0); f(a, 0,0); f(0, a, 0); f(0,0, a); max f = max (see [4]) f(a, a, 0); f(a, 0, a); f(0, a, a); f(a, a, a) Application 1. Prove that if a, b [0,2] then: a APPLICATIONS b b 2 a 2 (2 a)b 12 Daniel Sitaru 18 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

Proof 1(Claudia Nănuți). Let be K = [0,2] [0,2]; f: K R; f(a, b) = (2 a)b The function f is continuous on [0,1] [0,1]. From Weierstrass theorem f touches its maximum on [0,1] [0,1], which is a convex domain. We have f ʹ = 0,f ʹ = () 2b(2 a) and f ʹʹ = () b, f ʹʹ = () 2(2 a) > 0. > () The function f is strictly convex in a, b and is defined on a square with the sides parallel with the axes. It follows that f touches its maximum in one of the square s vertices. Since f(0,0) = 0, f(0,2) = (2 0) 2 = 12, f(2,0) = (2 2) 2 = 4 we find max (,) f(a, b) = f(0,2) = 12. Proof 2 (Dang Thuanh Tuan,Vietnam). (2 2) 0 = 2 and f(2,2) = Since b [0,2] b 2b we obtain 2 = () = ()() ()()()()()() ()() 0. So (2 a)b 2b ab 2 2 2 = 12. Application 2. Let be x, y, z [0,1]. Prove that: Proof (Daniel Sitaru): Let be f: [0,1] [0,1] [0,1] R; f(x, y, z) = The equality holds for a = 0, b = 2. (1 x)(1 y)(1 z) 1 (1 x)(1 y)(1 z) Claudia Nănuți The function f is continuous on f: [0,1] [0,1] [0,1].From Weierstrass theorem f touches its maximum on [0,1] [0,1] [0,1], which is a convexe domain. f ʹ = () () (1 y)(1 z), f ʹʹ = () () > 0 Analogous: f ʹʹ > 0, f ʹʹ > 0. The function f is strictly convexe on x, y, z and it is defined on a cube with the sides parallel with the axes. It follows that f touches its maximum in one of the cube s vertices. 19 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

f(1,1,1) = 3 2018 ; f(1,1,0) = 2 2018 ; f(0,0,1) = 1 2018 f(1,0,1) = 2 2018 ; f(0,1,0) = 1 2018 ; f(1,0,0) = 1 2018 Application 3. Let be x, y, z [0,1]. Prove that: Proof (Claudia Nănuți) f(0,1,1) = 2 2018 ; f(0,0,0) = 1 It follows that max f(x, y, z) = 1. (1 (y 1)e (x 1)e x)e 4e y z Let be f: [0,1] [0,1] [0,1] R; f(x, y, z) = (y 1)e (x 1)e () Daniel Sitaru The function f is continuous on [0,1] [0,1] [0,1]. From Weierstrass theorem f touches its maximum on [0,1] [0,1] [0,1] which is a convex domain. f ʹ = 2x(y 1)e e e, f ʹʹ = 2(y 1)e 2x e > 0, f ʹ = e (1 x)e f ʹʹ = (1 x)e > 0, f ʹ = 2z(x 1)e (1 x)e f ʹʹ = 2(x 1)e 2z e (1 x)e > 0 The function f is strictly convex on x, y, z and it is defined on a cube with the sides parallel with the axes. It follows that f touches its maximum in one of the cube s vertices. f(0,0,0) = 2 e ; f(1,0,0) = e 2; f(0,1,0) = 3 e f(0,0,1) = 1 e; f(1,1,0) = 2e 2; f(0,1,1) = 2 e; f(1,0,1) = 3e; f(1,1,1) = 4e It follows that max f(x, y, z) = 4e. Application 4. Prove that if a, b [0,1] then: Proof (Daniel Sitaru). a 1 2 b 3 3 (1 a)e e 4 Let be f: [0,1] [0,1] R; f(x) = (1 a)e 20 ROMANIAN MATHEMATICAL MAGAZINE NR. 20 Claudia Nănuți

The function f is continuous on [0,1] [0,1]. From Weierstrass theorem f touches its maximum on [0,1] [0,1], which is a convex domain. f ʹ = 2 (b 2)3 ln 3 e, f ʹʹ = (b 3)e ln 3 > 0 f ʹ = (a 1)2 ln 2 3 (1 a)e, f ʹʹ = (a 1)2 ln 2 (1 a)e > 0 The function f is strictly convex on a, b and it is defined on a square with the sides parallel with the axes. It follows that f touches its maximum in one of the square s vertices. Since f(0,0) = e 4; f(1,0) = 3; f(0,1) = and f(1,1) =, it follows that max f = e 4. So we obtain Problem 1. Prove that if a, b [0,1] then: 1 Problem 2. Prove that if a, b, c [0,1] then: References: (1 a)e e 4. PROPOSED PROBLEMS 1 a b 1 1 b c 1 1 c a 1 3 3 4 1 a b 2 1 b c 2 1 c a 2 (1 a)(1 b)e 5 2 [1] Daniel Sitaru, Math Phenomenon, Ed. Paralela 45, 2016. Daniel Sitaru Daniel Sitaru [2] Radu Gologan, Daniel Sitaru, Leonard Giugiuc, 300 Romanian Mathematical Challenges, Ed. Paralela 45, 2016. [3] Daniel Sitaru, Leonard Giugiuc, Claudia Nănuți, Diana Trăilescu, Inegalități Inequalities, Ecko Print Publishing House, 2015. [4] G. H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1934. [5] Gazeta Matematică, Seriile A și B. [6] Octogon Mathematical Magazine. 21 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

ON THE PROBLEM 11984/AMERICAN MATHEMATICAL MONTHLY-May 2017 PROPOSED BY DANIEL SITARU Minimal and maximal bounds for the sum a 6 b 6 c 6 By Marius Drăgan, Neculai Stanciu Romania Theorem. In any triangle ABC with the sides a, b, c, circumradius R, inradius r and d = R 2Rr holds the following inequality: 2 (R r d) [4(R r d) R ] a b c 2 (R r d) [4(R r d) R ] Proof. We use the following Lemma (fundamental inequality or Blundon s inequality). For any triangle ABC the inequality s s s hold where s, s represents the semiperimeter of two isosceles triangles A B C and A B C which have the same circumradius R and inradius r as the triangle ABC with the sides a = 2(R r d)(r r d), b = c = 2R(R r d) a = 22(R r d)(r r d), b = c = 22R(R r d) where d = R 2Rr. A proof of this lemma is given in [1]. From the identity x = 3xyz x x yz if we replace x = a, y = b, z = c then we obtain a = 3a b c a a b c We consider the functions: f, g, h, F: [s s ] R, f(s) = 3a b c = 3(4Rrs), g(s) = 2(s r 4Rr), h(s) = a (bc) = = a 4 ab a 6abc a ab = = s 2r(4R 7r)s (4R r) r, with h (s) = 4s(s 4Rr 7r ), F(s) = f(s) g(s)h(s). Since s s 16Rr 5r 4Rr 7r it results that h is increasing on [s, s ]. Also, f and g are increasing on [s, s ]. Hence, F is increasing on [s, s ], then F(s ) F(s) F(s ) or a b c a b c a b c (1). If we replace the values of a, b, c, a, b, c from the lemma in (1), then we obtain the desired inequality and we are done. 22 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

Reference: [1] M. Drăgan, N. Stanciu, A new proof of the Blundon inequality, Rec. Mat, 2(2017), 100-104. [2] D. Sitaru, Problem 11984, The American Monthly, Vol. 124, No. 5 (May 2017), p. 466. SOME INEQUALITIES IN FOUR VARIABLES WITH SUM 1 By Ștefan Andrei Mihalcea-Romania Let a, b, c, d 0, with a b c d = 1. First, we start with abc. We can associate the members in a nice way, like this: abc = ad(b c) bc(a d) ()() ()() = ()() (1), using that their sum is 1. Also, abc ()() (2) and abc ()() (3). If we add (1) and (2) it results: abc ()()()(). But d c = 1 a b and b c = 1 a d. So, abc () (). 16 abc 2 2a 2c (1 a c) = 1 (a c). Analogous, 16 abc 1 (b d). From this, it results that max{(a c), (b d) } 16 abc 1. Summing (1), (2), (3) abc ()()()()()(), but this equal with abc (4). Coming back, we have (a c)(b d) (a b)(c d) (a d)(b c) = 2(a b c) [(a b) (a c) (b c) ]. So, 36 abc 3(2 2d) (2 2d) = 2(1 d)(1 2d). From this, it results that x {a, b, c, d}, abc ()(). Making x = a,, x = d, then summing 72 abc 3 4 ab. We can prove the last inequality using (4): we will prove that 3 4 ab ab a, which is true by C B S and a b c d = 1. From Viette Relations a, b, c, d are solutions for x x x = a,, x = d, then summing a abx x abcd = 0. Making ab( a ) 4abcd = a abc. From (4) a abc a 6 abc a 4abcd 23 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

a (1 a) 4abcd abc 5 12 ab SOME ALGEBRAIC INEQUALITIES PROVED BY USING A FERMAT- TORICELLI S GEOMETRIC CONFIGURATION By Daniel Sitaru-Romania Abstract: In this paper it s developed a method to construct algebraic inequalities by constructing a triangle configuration. Famous inequalities are redesigned using the properties of Fermat Torricelli point of this triangle. Keywords: Fermat Torricelli; inequalities Main result: If x, y, z > 0 then: 3 1. (x 2 xy y 2 ) xy yz zx 2. x2 xyy 2 3 x 2 xyy 2 xyyzzx 3. (2x 2 x(y z) yz) (x 2 xy y 2 ) 4. 3 y2 yzz 2 (2 x 2 xzz 2 x2 xy) 1 x 2 xyy 2 5. (xy yz zx) x 2 xy y 2 3 (x 2 xy y 2 ) 6. (x y z) 2 (x 2 xy y 2 )(y 2 yz z 2 ) 3( xy) 7. 2 x2xyy2 x2xyy2 x 2 xyy 2 2 x 2 xyy 2 3( xy) 2 Let T be a point in a plane and A, B, C such that TA = x; TB = y; TC = z and ATB = BTC = CTA = 120 24 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

T is the Fermat Torricelli s point of Δ ABC. By cosine s rule in Δ BTC; Δ CTA; Δ ATB: Area of triangle ABC: a = BC = y yz z b = CA = z zx x c = AB = x xy y S = [ABC] = 1 2 TB TC sin 120 1 TC TA sin 120 2 1 2 3 TA TC sin 120 = (xy yz zx) 4 Proof 1: By Carlitz s inequality (AMM 1961) in Δ ABC: a b c (x xy y ) (x xy y ) 4 3 S 4 3 3 (xy yz zx) 4 xy yz zx Observation: Inequality (1) it is known as Wu s inequality. Proof 2: By Mitrinovic s inequality in Δ ABC: Proof 3: cos A = s 3 3 2 R 2s 3 3R a b c 3 3 abc 4S 4S(a b c) 3 3abc 4 3 5 xy x xy y 3 3 x xy y 3 xy x xy y 3 3 x xy y x xy y x xy y 3 xy yz zx = ( )( ) 2x x(y z) yz cos A = 2(z zx x )(x xy y ) 25 ROMANIAN MATHEMATICAL MAGAZINE NR. 20 =

It s known that: cos A cos B cos C 2x x(y z) yz 2(z zx x )(x xy yz) 1 8 (2x x(y z) yz) (x xy y 1 ) (2x x(y z) yz) (x xy y ) Proof 4: It s known Walker s inequality in any Δ ABC: 3 a b c b c a (a b c ) 1 a 1 b 1 c 3 y yz z x xz z (x xy y 1 ) x xy y 3 y yz z x xz z 2 1 x xy x xy y Proof 5: It s known Curry s inequality (AMM-1967). In any triangle ABC: 4S 3 9abc a b c 4 3 4 (xy yz zx) 3 9 x xy y x xy y (xy yz zx) x xy y 3(x xy y ) Proof 6: It s known Hadwiger Finsler s inequality.in any triangle ABC: a b c 4S 3 (a b) (b c) (c a) 2(ab bc ca) 4S 3 a b c 2 (x xy y )(y yz z ) 4 3 3 4 xy (x xy y ) 2 (x xy y )(y yz z ) 3 xy 2 x xy x 2 xy (x xy y )(y yz z ) (x y z) (x xy y )(y yz z ) Proof 7: It s known Klamkin s inequality.in any Δ ABC: 4r abc a b c R 26 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

4 S s abc a b c a b c 16S ( xy) 4 x xy y x xy y x xy y (x xy y ) 16 ( xy) 3( xy) x xy y (x xy y) x xy y (x xy y ) 3( xy) Observation:All inequalities (1-7) becomes equalities for x = y = z. Reference: [1] Daniel Sitaru Math Phenomenon - Editura Paralela 45 Publishing House Pitești Romania 2016 [2] Romanian Mathematical Magazine, www.ssmrmh.ro ABOUT SOME FAMOUS INEQUALITIES By D.M. Bătinețu-Giurgiu, Daniel Sitaru Romania Abstract: In this paper we develop few famous inequalities with the same start point in a lemma. Keywords: Bergstrom, Hadwigwer-Finsler, Cebyshev, Mitrinovic, Doucet, Tsintsifas, Hölder, Minkowski Lemma: If m N; y [0, ) then: Proof: If m = 0 its obviously. If n N; n 2; x (0, ); k 1, n we denote x = If m 0 by AM-GM: m y (m 1) m y (m 1)y (1) x. 1 1 1 y = (m 1)y "" Theorem 1: If m, n N; n 2; x (0, ), k 1, ; n a [0, ); cx > d max X ; b, c, d (0, ) then: mn ()() (2) Proof: A (m) = mn ax bx = m ax bx cx dx cx dx (m 1) = (m 1)B (3) () 27 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

B = ax bx db cx dx = adx bdx db cx dx nb = = adx bdx b = (ad bc)x cx dx 1 cx dx (ad bc)x = (ad bc)x cnx d db n (cx dx ) n x = (ad bc)x cnx d n n = (ad bc)x = cnx dx x = (ad bc)n cn d (ad bc)n bn = (ad bc)n bcn bdn (an b)dn = cn d cn d cn d B () (4) By (3); (4): A (m) ()() Theorem 2: If m, n, p N; n 2; X (0, ); k 1, ; n a [0, ); b, c, d (0, ) such that cx > d max x then: (m (ax bx ) ) p ( ) (m 1)(p 1) () (5) Proof: C (m) = (m (ax bx ) 1 ) p (cx dx ) 1 (m 1)(aX bx ) (p 1) = cx dx (m 1)(p 1) = (m 1)(p 1)B (6) B = ax bx = (ax bx ) (ax bx ) = cx dx (cx dx )(ax bx ) acx (bc ad)x x bdx ( ) () = () () (7) X. By (7): B () () = () () = = () = () = () ()() ()() (8) By (6); (7): C (m) (m 1)(p 1) () Theorem 3: If m, n, p N; n 2; a, b [0, ); k 1, n then: 28 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

() m a () p b (m 1)(p 1)( a b ) (9) Proof: By lemma: () () D (m, p) = m a p b (m 1)a (p 1)b = = (m 1)(p 1) a b (m 1)(p 1) a b Theorem 4: If m, n, p, r, s N, n 2; a, b (0, ); k 1, n then: (m a ) (p a ) (r b ) (s b ) Proof: By lemma: (m 1)(p 1)(r 1)(s 1)( a b ) (10) E (m, p, r, s) = (m a )(p a ) (r b (s b ) (m 1) a (p 1) a (r 1) b (s 1) b = = (m 1)(p 1)(r 1)(s 1) a b (m 1)(p 1)(r 1)(s 1) a b Theorem 5: If m, n N; n 2; a (0, ); k 1, : n mn a (m 1)n a (11) Proof: F (m) = mn a = m a (m 1) a (m 1)n a Theorem 6: If m, n N; n 2; a, b (0, ); k 1, ; n p, q (0, ); = 1 then: Proof: mn () mn a () a mn () mn b () b (m 1) a b (12) () m a 29 ROMANIAN MATHEMATICAL MAGAZINE NR. 20 () m b

(m 1)a (m 1)b = (m 1) a b = (m 1) a ö (m 1) a b Theorem 7: If m, n N; n 2; a, b (0, ); k 1, ; n p (1, ) then: mn () a Proof: G (m) = mn () a m b () = m a () m b () = (m 1) a b b (m 1) ( (a b ) ) (13) m b () () = (m 1)a (m 1) = (m 1)b (a b ) Theorem 8: If m, n, p N; n 2; a, b (0, ); k 1, ; n (a ) ; (b ) same monotony then: n m a p b (m 1)(p 1)( a )( b ) (14) Proof: By lemma: H (m, p) = n m a p b n (m 1)a (p 1)b = = n(m 1)(p 1) a b (m 1)(p 1) a b Theorem 9: If m N; u, v, w, x, y, z (0, ) then: 3m () (m 1) (m 1)(x y z ) (15) Proof: K(m) = 3m = = m ux v w m vy w u m wz u v (m 1) ux v w vy w u wz u v = = (m 1) ux v w x (m 1)(x y z ) = = (m = 1)(u v w) x (m 1)(x y z ) v w = 30 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

(x y z) (m 1)(u v w) (m 1)(x (v w) y z ) = = (m 1) 1 2 (x y z) (x y z ) In ΔABC; s - semiperimeter; F - area; r inradii, R - circumradii. Its known that: a b c = 2(s r 4Rr) (16) ab bc ca = s r 4Rr (17) Doucet s inequality: 4R r s 3 (D) 3m ua v w If in (15) we take x = a; y = b; z = c: (a b c) (m 1) (m 1)(a b c ) = 2 = (m 1)2s 2(s r () 4Rr) = 2(m 1)r(4R r) 2(m 1)rs 3 = 2(m 1) 3F If m = 0 in (18): 2 3F (T) which is Tsintisifas inequality. Theorem 10: If m, n N; u, v, w, x, y, z (0, ); u v w = U; d, t (0, ); d t; p (0, ) then: du tu m pu tu n X () du tv m pu tv n y () du tw m pu tw n z () ()() (d p)(x y z) (3p t)(x y z ) (19) Proof: Let L(m, n) be the LHS in (19). By lemma: du tu L(m, n) (m 1) pu tu (n du tu 1)X = (m 1)(n 1) x pu tu L(m, n) (m 1)(n 1)(x y z du tu ) (m 1)(n 1) 1 x = pu tu = (m 1)(n 1)(d p)u x (x y z) (m 1)(n 1)(d p)u = pu tu (pu tu) 31 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

(m 1)(n 1)(d p)u (x y z) (m 1)(n 1)(d p)(x y z) = = 3pU t U 3p t (m 1)(n 1) L(m, n) (d p)(x y z) (3p t)(x y z ) 3p t If m = n = 0; p = 0; d = t = 1 by (19): x y z (x y z) (x y z ) (20) x y z (x y z) (x y z ) (21) If in (21); x = a; y = b; z = c then in ΔABC: v w a u w u b u v v w c (a b c) (a b c ) = = 4s 2(s r 4Rr) = 2s 2r(4R r) 2s 3 3r 2r(r 4R) 6 3rs 2rs 3 = 8 3rs = 8 3F This is called D.M. Bătinețu-Giurgiu s inequality: a b c 8 3F (B-G) Finally we add a proof by Hadwiger-Finsler s inequality: a b c 4 3F (a b) (b c) (c a) (H-F) Proof: (H F) B = a b c 2(a b c ab bc ca) 4 3F B = a b c 2(a b c ) 2(ab bc ca) = = 2(ab bc ca) (a b c ()() ) = 2(s r 4Rr) 2(s r 4Rr) = = 4r(R r) 4rs 3 = 4 3rs = 4 3F PROPOSED PROBLEMS 5-CLASS-STANDARD V.1. Se consideră numerele naturale a și b. Împărțindu-l pe a la b se obține câtul 5 și restul r. Împărțindu-l pe a la (b 1) se obține restul r. Aflați a și b. Proposed by Constantin Ionică-Romania V.2. Să se determine numerele naturale n care împărțite la 5 dau câtul a și restul b, iar împărțite la 9 dau câtul b și restul a. Proposed by Constantin Ionică-Romania 32 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

V.3. Să se determine x, y, z N știind că ele verifică relația 3 4 5 4y = 4 101 Proposed by Constantin Ionică-Romania V.4. Pe o scară a unui bloc sunt 17 apartamente cu două, trei și respectiv patru camere. Câte apartamente de fiecare fel dacă sunt în total 52 de camere? Proposed by Constantin Ionică-Romania V.5. Pentru ce număr natural n, numărul N = 1 2 3 n 417 este pătrat perfect? Proposed by Constantin Ionică-Romania V.6. Să se rezolve ecuația 2 2 2 2 = 1856, știind că x, y, z, t sunt numere naturale distincte. Proposed by Constantin Ionică-Romania V.7. Aflați două numere naturale a și b cu a < b, iar produsul lor și cel mai mic multiplu comun al acestora sunt egale cu 13585. Proposed by Constantin Ionică-Romania V.8. Aflați două numere naturale a și b cu a > b, știind că suma lor este 144, iar cel mai mic multiplu comun al lor este 420. Proposed by Constantin Ionică-Romania V.9. Aflați numerele naturale a, b, c, d știind că verifică relațiile: ab c d = 1200, ab = 3(c d), cel mai mic multiplu comun al numerelor a și b este 60, iar cel mai mare divizor comun al numerelor c și d este 25. Proposed by Constantin Ionică-Romania V.10. Aflați numerele prime de forma abc, știind că: c ab = b ac 50. Proposed by Constantin Ionică-Romania V.11. Să se determine numărul natural A = 5 7, știind că 5A are cu 8 divizori mai mult decât A, iar 7A are cu 6 divizori mai mult decât A. Proposed by Constantin Ionică-Romania V.12. Să se arate că numerele: a = 1 2 3 95 96 și b = 1 2 3 97 98 dau același rest la împărțirea cu 1901. Proposed by Constantin Ionică-Romania V.13. Să se determine cifrele x, y, z pentru care șirul 4526,7523,8720, continuă cu 5xyz. Proposed by Gheorghe Căiniceanu-Romania V.14. O minipiscină în formă de paralelipiped dreptunghic are dimensiunile L = 220 cm. l = 150 cm, h = 60 cm. Se umple jumătate de piscină. a) Câți litri de apă avem în piscină? b) Scufundăm în piscină o piatră paralelipipedică având dimensiunile 44, 50, 20 cm. Cu cât crește nivelul apei în piscină? Proposed by Gheorghe Căiniceanu-Romania 1 1 1 V.15. a) Prove that n n 1 n ( n 1) fractions with the numerator equal to 1. 1. b) Write the fraction 2010 as a sum of 2011 subunit Proposed by D. M. Bătinețu-Giurgiu, Neculai Stanciu-Romania 33 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

V.16. Let x, y, z be nonzero natural numbers. Find A min( x y z xy yz zx) and a triplet ( x, y, z) such that A 2015. Is A a prime number? Proposed by D.M. Bătineţu-Giurgiu, Neculai Stanciu-Romania V.17. Prove that exists an infinity of triplets ( x, y, z) of natural numbers which verify the a b c relationship x y z, where ( ab, c) 1. Proposed by D.M. Bătineţu-Giurgiu,Neculai Stanciu-Romania 2 V.18. Find the prime numbers a b c such that: 101a 121b 15c 2018. Proposed by Marin Chirciu-Romania V.19. Prove that the number any natural number n. 2 4 5 n can be written of a sum of three nonzero perfect squares, for Proposed by Marin Chirciu-Romania V.20. If a, b are nonzero digits in ten base, such that a b 10, and c N such that ab c 25, then prove that the number 2015 a 2015b c is a perfect square. Proposed by D.M. Bătineţu-Giurgiu, Neculai Stanciu-Romania V.21. Prove that,if a, b and c are real numbers such that 2 ( b c) a, 2 ( c a) b and 2 ( a b) c, then: (i) a b c 0 ; (ii) ab bc ca 0. Proposed by D.M.Bătinețu-Giurgiu,Neculai Stanciu-Romania V.22. Let be the number A 20151 2 3... 2014. Prove that the number A can be written as a sum of five nonzero distinct perfect squares. Proposed by Marin Chirciu-Romania V.23. Let be the number A 1111 2 3... 110. Prove that the number A can be written as a sum of five perfect squares, nonzero distinct. Proposed by Marin Chirciu-Romania V.24. Prove that if 7 ab and7 abc then 7 a cba. Proposed by Marin Chirciu-Romania V.25. Prove that: 340 221 357 2 3 2. Proposed by Marin Chirciu-Romania V.26. Let n be a nonzero natural number. Solve the equation: nx 1 nx 2 nx 3... nx 2n 1 2n 1 2. V.27. Let a, b, x, y be nonzero natural numbers such that a b 2a 1 Prove that ax a 1 y se divide cu b a2a 1 2 1 se divide cu b a2a 1 bx a b y Proposed by Marin Chirciu-Romania b,2a 1 1. and if and only if.proposed by Marin Chirciu-Romania 34 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

V.28. Find the natural numbers pairs for which the sum between their product and their difference is 2005. V.29. Let A N be a set having simultaneously the properties: Proposed by Marin Chirciu-Romania (1)1 A, (2)If x A then 3x A, (3)If 4x A then x A.Prove that0, 6,180,182 A. Proposed by Marin Chirciu-Romania V.30. Prove that 2006 n it can be written as a sum of three perfect nonzero, distinct squares, for any * n N. Proposed by Marin Chirciu-Romania V.31. Prove that 2001 n * n N. can be written as a sum of three nonzero, distinct perfect squares, for any Proposed by Marin Chirciu-Romania V.32. Prove that 30 n * n N. V.33. Prove that 21 n * n N. V.34. Prove that 35 n * n N. can be written as a sum of three nonzero distinct perfect squares, for any Proposed by Marin Chirciu-Romania can be written as a sum of three distinct nonzero perfect squares for any Proposed by Marin Chirciu-Romania can be written as a sum of three nonzero distinct perfect squares, for any Proposed by Marin Chirciu-Romania V.35. Dacă a, b, c N astfel ca a b, a c, b c să fie simultan pătrate perfecte, arătaţi că cel puţin două din numerele a, b, c sunt pare. 6-CLASS-STANDARD Proposed by Dan Nedeianu-Romania VI.1. Suma cifrelor unui număr natural este y, iar produsul cifrelor este un număr z (nenul). Să se afle x știind că x y z = 139. Proposed by Constantin Ionică-Romania VI.2. Aflați numerele naturale a, b, c știind că: = = și a b 3 = 2c Proposed by Constantin Ionică-Romania VI.3. Aflați cea mai mică și cea mai mare valoare a sumei (a b c), unde a, b, c N și verifică relația: = =. Proposed by Constantin Ionică-Romania VI.4. Numerele naturale nenule a, b, c sunt direct proporționale cu numerele 2,3 respectiv 4, iar numerele c și d sunt invers proporționale cu numerele și. a. Știind că (b c)(c d) = 63a, calculați numerele a, b, c, d. b. Cât la sută din (b d) reprezintă (a c)? Proposed by Constantin Ionică-Romania 35 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

VI.5. Fie a, a, a,, a o rearanjare a numerelor 1,2,3,,2017. Să se arate că produsul (a 1) (a 2) (a 3) (a 2017) este număr par. Proposed by Constantin Ionică-Romania VI.6. Fie a, b, c Z astfel încât 9a 6b 5c = 0. Să se arate că: c(b a) se divide cu 15. Proposed by Constantin Ionică-Romania VI.7. Să se determine numerele întregi x și y care verifică relația: 22x 39y = 1001. Proposed by Constantin Ionică-Romania VI.8. Numerele a, b, c N sunt invers proporționale cu numerele b c, c a, a b. Alfați numerele a, b, c dacă ele verifică relația: a b b c c a = 16(ab bc ca). VI.9. Determinați x, y N din ecuația = () Proposed by Constantin Ionică-Romania, x > 2 Proposed by Constantin Ionică-Romania VI.10. Aflați n N încât prin împărțirea numerelor 3399, 2197 și 1287 la numerele 4n, 3n respectiv 2n se obțin resturile 39, 37 și 23. Proposed by Constantin Ionică-Romania VI.11. Fie unghiul AOB cu măsura de 60 și semidreapta [OC în interiorul AOB încât m( AOC) = 20. Se consideră [OD [OA, [OD și [OA în același semiplan față de [OB, iar [OE este opusă [OC și [OF este bisectoarea BOE. a. Calculați m( DOE) și m( BOF) b. Arătați că [OE este bisectoarea DOF c. Dacă [ODʹ este opusă [OD cercetați dacă BOC FODʹ Proposed by Constantin Ionică-Romania VI.12. Să se arate că oricare ar fi patru numere de forma 7 () 8 () 9 () x, y, z N există cel puțin două numere a căror diferență se divide cu 10. cu Proposed by Constantin Ionică-Romania VI.13. Fie Δ ABC cu AB = 9 cm, AC = 15 cm, BC = 18 cm și punctele M [BC], N [BC], M (BN) astfel încât = și =, iar punctele E și F sunt mijloacele segmentelor [AM], respectiv [AN]. a. Calculați lungimile segmentelor [BM], [MN], [NC] b. Arătați că AFB AEC. Proposed by Constantin Ionică-Romania VI.14. In 1 st of January, 2015, Nicu borrows 50 from his friends Mitică, Titu and Marius. He agrees to pay the whole borrowed sum at 31 December 2015. The annual interest rate for the three credits is 0,8%, 1% respectively 1%. After calculus, he is going to pay an interest 1 rate of 0,96% to the whole borrowed sum. If the borrowed sum from Titu is 1 bigger than 2 the one borrowed from Mitică, how much does Nicu borrowed from each of his friends? Proposed by D.M.Bătinețu-Giurgiu,Neculai Stanciu-Romania 36 ROMANIAN MATHEMATICAL MAGAZINE NR. 20

2 VI.15. Solve for integers: 81x 9xy 8y 47. Proposed by Marin Chirciu-Romania VI.16. Prove that: if a, b and c are real numbers such that 2 ( a b) c, then, ab ( a b) abc 0. 2 ( b c) a, 2 ( c a) b and Proposed by D.M.Bătinețu-Giurgiu,Neculai Stanciu-Romania VI.17. Prove that if 0 c b a and 3 ( a b) b c, then a 2 b c 2 b 2 c a 2 c 2 a b 2. Propsed by D.M.Bătinețu-Giurgiu,Neculai Stanciu-Romania VI.18. Prove that if a, b, c, d, x, y, z, and t are nonzero integers such that a x y, b y z, c z t and d t x, then the numbers ab cd, bc ad and ac bd cannot be simultaneous prime numbers. Proposed by D.M.Bătinețu-Giurgiu,Neculai Stanciu-Romania VI.19. If a and b are real positive numbers and 1 x x a x a, compute x x. Proposed by Marin Chirciu-Romania VI.20. We consider the nonzero natural numbers n and a. Prove that the following is a fraction in n 2 a its lowest terms. Proposed by Marin Chirciu-Romania n1 2 2a 1 VI.21. Let be * n N, n given. Solve in integers the system of equations: xy z 3n 1 x yz 3n 2 Proposed by Marin Chirciu-Romania VI.22. Solve in real numbers the system of equations: xy 1 y yz 1 z zx 1 x Proposed by Marin Chirciu-Romania VI.23. Solve in integers the equation: x 1 2 x x 2 3x 1 0 Proposed by Marin Chirciu-Romania 8 1 VI.24. Prove that 13 divides 21 n 8, where n N. Proposed by Marin Chirciu-Romania 8 1 VI.25. Prove that 17 divides 81 n 64, where n N. Proposed by Marin Chirciu-Romania 37 ROMANIAN MATHEMATICAL MAGAZINE NR. 20