Research Article A Quantitative Assessment of Surface Urban Heat Islands Using Satellite Multitemporal Data over Abeokuta, Nigeria

Similar documents
1. Introduction. Chaithanya, V.V. 1, Binoy, B.V. 2, Vinod, T.R. 2. Publication Date: 8 April DOI: /cloud.ijarsg.

AssessmentofUrbanHeatIslandUHIusingRemoteSensingandGIS

APPLICATION OF LAND CHANGE MODELER FOR PREDICTION OF FUTURE LAND USE LAND COVER A CASE STUDY OF VIJAYAWADA CITY

DEPENDENCE OF URBAN TEMPERATURE ELEVATION ON LAND COVER TYPES. Ping CHEN, Soo Chin LIEW and Leong Keong KWOH

Comparison between Land Surface Temperature Retrieval Using Classification Based Emissivity and NDVI Based Emissivity

Remote sensing Based Assessment of Urban Heat Island Phenomenon in Nagpur Metropolitan Area

Landuse and Landcover change analysis in Selaiyur village, Tambaram taluk, Chennai

Applications of GIS and Remote Sensing for Analysis of Urban Heat Island

Remote Sensing and GIS Application in Change Detection Study Using Multi Temporal Satellite

Spatial Geotechnologies and GIS tools for urban planners applied to the analysis of urban heat island. Case Caracas city, Venezuela Contribution 115.

MONITORING THE SURFACE HEAT ISLAND (SHI) EFFECTS OF INDUSTRIAL ENTERPRISES

Investigation of the Effect of Transportation Network on Urban Growth by Using Satellite Images and Geographic Information Systems

Overview of Remote Sensing in Natural Resources Mapping

Study of Urban Heat Island Trends to Aid in Urban Planning in Nakuru County-Kenya

PREDICTION OF FUTURE LAND USE LAND COVER CHANGES OF VIJAYAWADA CITY USING REMOTE SENSING AND GIS

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 ISSN

Monitoring Vegetation Growth of Spectrally Landsat Satellite Imagery ETM+ 7 & TM 5 for Western Region of Iraq by Using Remote Sensing Techniques.

Vegetation Change Detection of Central part of Nepal using Landsat TM

Evaluation of Land Surface Temperature and Vegetation Relation Based on Landsat TM5 Data

Learning Objectives. Thermal Remote Sensing. Thermal = Emitted Infrared

IMPACT OF URBAN EVOLUTION ON LAND-USE CHANGE OF SARGODHA CITY, PAKISTAN

This is trial version

CHANGES IN VIJAYAWADA CITY BY REMOTE SENSING AND GIS

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China

Monitoring and Change Detection along the Eastern Side of Qena Bend, Nile Valley, Egypt Using GIS and Remote Sensing

Using Geographic Information Systems and Remote Sensing Technology to Analyze Land Use Change in Harbin, China from 2005 to 2015

2015 Nigerian National Settlement Dataset (including Population Estimates)

Preparation of LULC map from GE images for GIS based Urban Hydrological Modeling

1. Introduction. Jai Kumar, Paras Talwar and Krishna A.P. Department of Remote Sensing, Birla Institute of Technology, Ranchi, Jharkhand, India

The Road to Data in Baltimore

Modeling Urban Land Cover Growth Dynamics Based on Land Change Modeler (LCM) Using Remote Sensing: A Case Study of Gurgaon, India

Use of Corona, Landsat TM, Spot 5 images to assess 40 years of land use/cover changes in Cavusbasi

COMPARISON OF NOAA/AVHRR AND LANDSAT/TM DATA IN TERMS OF RESEARCH APPLICATIONS ON THERMAL CONDITIONS IN URBAN AREAS

Defining microclimates on Long Island using interannual surface temperature records from satellite imagery

Estimation of Land Surface Temperature of Kumta Taluk Using Remote Sensing and GIS Techniques

Multiresolution Analysis of Urban Reflectance

International Journal of Intellectual Advancements and Research in Engineering Computations

Digital Change Detection Using Remotely Sensed Data for Monitoring Green Space Destruction in Tabriz

COMBINED METHODS OF THERMAL REMOTE SENSING AND MOBILE CLIMATE TRANSECTS IN BEER SHEVA, ISRAEL

LAND USE LAND COVER, CHANGE DETECTION OF FOREST IN KARWAR TALUK USING GEO-SPATIAL TECHNIQUES

Dynamical Monitoring and Evaluation Methods to Urban Heat Island Effects Based on RS&GIS

Critical review of the Climate Change Impact on urban areas by assessment of Heat Island effect

URBAN CHANGE DETECTION OF LAHORE (PAKISTAN) USING A TIME SERIES OF SATELLITE IMAGES SINCE 1972

Abstract: About the Author:

LAND SURFACE TEMPERATURE CHANGE AFTER CONSTRUCTION OF THE KOZJAK DAM BASED ON REMOTE SENSING DATA

METRIC tm. Mapping Evapotranspiration at high Resolution with Internalized Calibration. Shifa Dinesh

Atmospheric correction of HJ1-A/B images and the effects on remote sensing monitoring of cyanobacteria bloom

The footprint of urban heat island effect in China

Comparison of MLC and FCM Techniques with Satellite Imagery in A Part of Narmada River Basin of Madhya Pradesh, India

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach

Analysis of Urban Surface Biophysical Descriptors and Land Surface Temperature Variations in Jimeta City, Nigeria

Analysis of Landuse, Landcover Change and Urban Expansion in Akure, Nigeria (pp )

CHAPTER 2 REMOTE SENSING IN URBAN SPRAWL ANALYSIS

Study of Urban heat Island Effect on Ahmedabad City and Its Relationship with Urbanization and Vegetation Parameters

Seasonal Variations of the Urban Heat Island Effect:

Land Cover Classification Over Penang Island, Malaysia Using SPOT Data

Effect of land use/land cover changes on runoff in a river basin: a case study

Urban Area Delineation Using Pattern Recognition Technique

Dynamic Expansion and Urbanization of Greater Cairo Metropolis, Egypt Ahmed Abdelhalim M. Hassan

Land Surface Temperature Analysis in an Urbanising Landscape through Multi- Resolution Data

Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria Abegunde Linda, Adedeji Oluwatola

Modelling the Atmospheric Urban Heat Island and its Contributing Spatial Characteristics

DETECTION AND ANALYSIS OF LAND-USE/LAND-COVER CHANGES IN NAY PYI TAW, MYANMAR USING SATELLITE REMOTE SENSING IMAGES

USING LANDSAT IN A GIS WORLD

CORRELATION BETWEEN URBAN HEAT ISLAND EFFECT AND THE THERMAL INERTIA USING ASTER DATA IN BEIJING, CHINA

COMPARASION OF NDBI AND NDVI AS INDICATORS OF SURFACE URBAN HEAT ISLAND EFFECT IN LANDSAT 8 IMAGERY: A CASE STUDY OF IASI

1. Introduction. S.S. Patil 1, Sachidananda 1, U.B. Angadi 2, and D.K. Prabhuraj 3

Impact of the Human Activities on the Local Climate and Environment of the Suez City in Egypt

Mapping Land Surface Temperature and Land Cover to Detect Urban Heat Island Effect: A Case Study of Tarkwa, South West Ghana

Land Use/Land Cover Mapping in and around South Chennai Using Remote Sensing and GIS Techniques ABSTRACT

STUDY OF NORMALIZED DIFFERENCE BUILT-UP (NDBI) INDEX IN AUTOMATICALLY MAPPING URBAN AREAS FROM LANDSAT TM IMAGERY

Graduate Courses Meteorology / Atmospheric Science UNC Charlotte

SPATIAL CHANGE ANALISYS BASED ON NDVI VALUES USING LANDSAT DATA: CASE STUDY IN TETOVO, MACEDONIA

Characterizing fractional vegetation cover and land surface temperature based on sub- pixel fractional impervious surfaces from Landsat TM/ETM+

VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY

Detection of Land Use and Land Cover Change around Eti-Osa Coastal Zone, Lagos State, Nigeria using Remote Sensing and GIS

MAPPING LAND USE/ LAND COVER OF WEST GODAVARI DISTRICT USING NDVI TECHNIQUES AND GIS Anusha. B 1, Sridhar. P 2

Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment

Mario Flores, Graduate Student Department of Applied Mathematics, UTSA. EES 5053: Remote Sensing

CURRICULUM VITAE (As of June 03, 2014) Xuefei Hu, Ph.D.

Evaluation of SEBAL Model for Evapotranspiration Mapping in Iraq Using Remote Sensing and GIS

Research Article Error Analysis in Measured Conductivity under Low Induction Number Approximation for Electromagnetic Methods

ESTIMATION OF LANDFORM CLASSIFICATION BASED ON LAND USE AND ITS CHANGE - Use of Object-based Classification and Altitude Data -

ANALYSIS AND VALIDATION OF A METHODOLOGY TO EVALUATE LAND COVER CHANGE IN THE MEDITERRANEAN BASIN USING MULTITEMPORAL MODIS DATA

DROUGHT RISK EVALUATION USING REMOTE SENSING AND GIS : A CASE STUDY IN LOP BURI PROVINCE

Urban Expansion of the City Kolkata since last 25 years using Remote Sensing

Urban Expansion and Loss of Agricultural Land: A Remote Sensing Based Study of Shirpur City, Maharashtra

Principals and Elements of Image Interpretation

THE REVISION OF 1:50000 TOPOGRAPHIC MAP OF ONITSHA METROPOLIS, ANAMBRA STATE, NIGERIA USING NIGERIASAT-1 IMAGERY

GLOBAL/CONTINENTAL LAND COVER MAPPING AND MONITORING

Application of Remote Sensing Techniques for Change Detection in Land Use/ Land Cover of Ratnagiri District, Maharashtra

Land Use/Cover Changes & Modeling Urban Expansion of Nairobi City

Geostatistical Analysis of Rainfall Temperature and Evaporation Data of Owerri for Ten Years

SATELLITE REMOTE SENSING

Analysis of Changing Land Cover in Chittagong City Corporation Area (CCC) by Remote Sensing and GIS

The Study of Impact of Urbanization on Urban Heat Island with Temperature Variation Analysis of MODIS Data Using Remote Sensing and GIS Technology

ASSESSING THERMAL RISK IN URBAN AREAS AN APPLICATION FOR THE URBAN AGGLOMERATION OF ATHENS

GROUNDWATER CONFIGURATION IN THE UPPER CATCHMENT OF MEGHADRIGEDDA RESERVOIR, VISAKHAPATNAM DISTRICT, ANDHRA PRADESH

Land cover/land use mapping and cha Mongolian plateau using remote sens. Title. Author(s) Bagan, Hasi; Yamagata, Yoshiki. Citation Japan.

Influence of Micro-Climate Parameters on Natural Vegetation A Study on Orkhon and Selenge Basins, Mongolia, Using Landsat-TM and NOAA-AVHRR Data

Transcription:

International Atmospheric Sciences Volume 2016, Article ID 3170789, 6 pages http://dx.doi.org/10.1155/2016/3170789 Research Article A Quantitative Assessment of Surface Urban Heat Islands Using Satellite Multitemporal Data over Abeokuta, Nigeria K.A.Ishola,E.C.Okogbue,andO.E.Adeyeri Department of Meteorology and Climate Science, Federal University of Technology, PMB 704, Akure, Ondo State, Nigeria Correspondence should be addressed to K. A. Ishola; skorchie126@yahoo.com Received 5 November 2015; Revised 29 March 2016; Accepted 5 April 2016 Academic Editor: Dimitris G. Kaskaoutis Copyright 2016 K. A. Ishola et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The fast urban expansion has led to the transformation of the natural landscape into anthropogenic surfaces. The city of Abeokuta, for instance, is located in a region experiencing rapid urbanization, which has produced a remarkable effect on the surface thermal response. This effect significantly influences urban internal microclimatology on a regional scale. In this study, the surface temperatures and land cover types retrieved from Landsat TM and ETM+ images of Abeokuta city for 1984, 2003, and 2014 were analyzed. A quantitative approach was used to assess surface urban heat islands through the relationships among surface temperature and land cover types. Results showed that impervious surface areas were found to be correlated positively with high temperatures. Conversely, vegetated areas and bare surfaces correlated positively with mid temperature zones. This study found that areas with increasing impervious surfaces will accelerate LST rise and consequently lead to increasing effect of surface urban heat islands. These findings pose a major challenge to urban planners. However, the study would help to quantify the impacts of different scenarios (e.g., vegetation loss to accommodate urban growth) on LST and consequently to devise appropriate policy measures. 1. Introduction Rapid rural-urban migration and population growth in the cities over the past decades have led to an unprecedented rate of urbanization globally, and it is likely to continue in the subsequent decades [1]. During the process of urbanization, a direct environmental consequence is the modification of land surfaces which results in the alteration of its physical properties including soil moisture, material heat capacity, and surface reflectivity and emissivity. This leads to change in land surface temperature and the decrease of evapotranspiration [2]. Consequently, the impacts result in surface urban microclimate variations locally. Over the last three decades, the rapid development of remote sensing techniques provided appropriate data for studying the regional surface characteristics of an area. Land surface parameters such as land surface temperature (LST), the normalized difference vegetation index (NDVI), and surface albedo dynamics were derived from data obtained from these sensors [3]. A quantitative relationship between LST and land use/land cover using both empirical and dynamic numerical methods has been documented [4, 5]. The consistent expansion of the urban areas is evident in the transformation of natural landscape into anthropogenic impervious surfaces. In turn, increased impervious surface areas also lead to greater temperatures in urban areas than in nonurban areas resulting in urban heat effect [6]. The proportion of impervious surfaces has been reported to be a good indicator for the monitoring of the urban thermal response. A positive correlation between the proportion of impervious surfaces and land surface temperatures was identified by Yuan and Bauer [7]. However, a consistent and quantitative detailed study to assess the changes in surface thermal response due to urban sprawl in Abeokuta city is very rare. This is probably due tothechallengesoflackofconsistentandrepetitivedata coverage on the changes in land surface physical conditions over this area. Hence, this study is aimed at assessing quantitatively the changes in surface urban thermal response due to various heterogeneous surface areas. The study will evaluate the dynamics of LST with respect to land cover changes and also determine the separate contributions of land cover types to surface thermal response change. Further, it will assist urban planners and policy makers in developing

2 International Atmospheric Sciences 0 (Kilometers) 1 2 4 6 Abeokuta south Figure 1: Map showing the study area. measures to curbing the environmental risks posed by this impact. 2. Materials and Methods ThisstudylooksatthecityofAbeokutainsouthwestNigeria (Figure 1) due to its rapid human and industrial growth and development. It lies between latitudes and7 15 0 N and longitudes 3 17 0 Eand3 26 0 E. Annual rainfall is about 963 mm and the temperature is usually between 26 and 28 C. The study employs cloudless Landsat 5 TM and 7 ETM+ images from 18 December 1984, 29 January 2003, and 29 December 2014. All bands from the images were applied in the analysis. Bands 1 5 and 7 have a spatial resolution of 30 m, and the thermal infrared band (band 6) has a spatial resolution of 120 m. 2.1. Land Cover Classifications. The maximum likelihood scheme was adopted for this work. Based on the prior knowledge of the land cover types in the study area, a chosen color composite (RGB = 432) was used for digitizing polygons around each training site for similar land cover. Then a unique identifier was assigned to each known land cover type. Afterwards, the statistical characterizations (i.e., signatures) of each land cover class were developed. Each composed image was ordered into 4 area classes: water, vegetation, impervious surface, and bare soil as shown in Figure 2. 2.2. Image Processing. The images acquired from the United States Geological Survey (USGS) database were radiometrically corrected before the calculation to avoid a datasetspecific result. The radiometric correction employed the algorithm of Chander and Markham [8] with the addition of an atmospheric correction. 8 N This converted the digital number (DN) of the raw image to at-satellite reflectance. Thermal band 6 was converted to atsatellitetemperatureandthencorrectedinanemissivewayto LST. The LST was retrieved using the following models: T b = LST = K 2 ln [(K 1 /L λ )+1], T b ε 0 0.25, where L λ equals spectral radiance at the sensor s aperture (w/m 2 ster μm); T b equals brightness temperature (K); K 1 and K 2 equal calibration constants. K 1 equals 607.76/666.09 and K 2 equals 1260.56/1282.71 (Wm 2 sr 1 μm 1 )forlandsat 5/7; ε 0 equals surface broadband emissivity; LST equals land surface temperature (K). 3. Results and Discussion Surface temperature has been established as a major indicator ofthepresenceofsurfaceurbanheatislandincitiesand urban areas. The relationship between land cover and surface temperature was analyzed for each year by producing images that provided a visual resource for analyzing the intensity and spatiality of LST change. 3.1. Spatiotemporal Dynamics of LST. The spatial-temporal distributions of LST changes over Abeokuta in the three examined dates (Figure 3) show that the LSTs ranged from 25.0 Cto37.9 C, 18.6 Cto34.4 C, and 23.7 Cto40.2 Cin 1984, 2003, and 2014, respectively. Figure 4 shows that no areas in Abeokuta experienced an extreme temperature ( 41 C) as at the time satellite overpassedinalltheperiods.in1984,alargepartofthe area (67.7% in all) fell within the higher temperature zones ( 30 C) and other areas (32.3%) fell into mid temperature zones (25 C 30 C). This high surface temperature might be due to high insolation and few atmospheric compositions (likethecloudcover)asatthetimesatelliteoverpassed,large distribution of imperviousness, or geographical relief of the area. Butin2003,about66.3%proportionsofthesurface area were dominated by mid-surface temperature zones (25 C 30 C). Other surface areas (29.1% and 4.6%) fell in the lower (<25 C) and higher ( 30 C) temperature zones, respectively. Moreover, a higher LST zone ( 30 C) was also observed in majority (81.6%) of the area in 2014. A noticeable surface area proportion (0.3% and 18.2%) were found in the lower (<25 C) and mid (25 C 30 C) temperature zones, respectively (Figure 4). The mean surface temperature variation over different land cover types (Figure 5) showed that the majority of the bare soil and impervious surface areas of Abeokuta had temperatures between 32 Cand35 Cinboth1984and2014. In 2003, the temperature was cooler between 26 Cand29 C in both land cover types. However, vegetation and water bodies have similar temperature variations between 28 and 30 Cin1984and2014. (1)

International Atmospheric Sciences 3 (a) (b) LULC Class names Vegetation Water body 0 1.5 3 6 9 12 (Kilometers) (c) Bare soil Impervious surface Coordinate system: WGS 1984 UTM Zone 31N Projection: Transverse Mercator Central meridian: 3.0000 Datum: WGS 1984 Scale factor: 0.9996 False easting: 500,000.0000 Latitude of origin: 0.0000 False northing: 0.0000 Units: meter Figure 2: Maps of land cover types of Abeokuta city for (a) 1984, (b) 2003, and (c) 2014. N This could be attributed to less urbanization process in the former year and increase in population and infrastructural development which has led to the extension of the urban core (higher urbanization) into the adjoining rural lands in the later year. Moreover, the mean LSTs of vegetation cover and water bodies were taken to between 24 Cand 26 Cin2003whichmightbeduetothepresenceofcloud cover and aerosol loads that reduced the incoming shortwave

4 International Atmospheric Sciences 3 20 0 E 3 20 0 E (a) (b) LST (degree Celsius) <29 29 31 31 33 33 35 35 37 37 Coordinate system: WGS 1984 UTM Zone 31N Projection: Transverse Mercator Central meridian: 3.0000 Datum: WGS 1984 Scale factor: 0.9996 False easting: 500,000.0000 Latitude of origin: 0.0000 False northing: 0.0000 Units: meter 0 1.75 3.5 7 10.5 14 (Kilometers) (c) Figure 3: Maps of Abeokuta city showing the thermal zones for (a) 1984, (b) 2003, and (c) 2014. N

International Atmospheric Sciences 5 Table 1: Correlations among LSTs and land cover types. ISA Bare Veg. Water <25 C 25 30 C 30 33 C 33 C ISA 1.00 0.99 0.99 0.92 0.22 0.50 0.10 0.78 Bare 1.00 0.97 0.96 0.34 0.60 0.02 0.85 Veg. 1.00 0.86 0.10 0.39 0.23 0.70 Water 1.00 0.59 0.80 0.30 0.97 <25 C 1.00 0.96 0.95 0.78 25 30 C 1.00 0.81 0.93 30 33 C 1.00 0.54 33 C 1.00 Area (%) Temperature ( C) 70 60 50 40 30 20 10 0 1984 2003 2014 <25 25 30 30 33 33 Temperature ( C) Figure 4: Changing pattern of surface temperature zones. 40 35 30 25 20 15 Impervious surface 1984 2003 2014 Water body Vegetation Bare soil Land cover class Figure 5: Mean LST variations over different land cover types. radiation. The high surface temperature even over vegetation cover in 2014 was as a result of more surface modifications, anthropogenic activities, little vegetation, and consequently little/no evapotranspiration. In addition, the magnitude of LST change is almost the same (5-6 C/16 19 years) over both impervious surface and bare soil (Figure 5). 3.2. Quantitative Relationship between LST and Land Covers. To show a quantitative relationship between land covers and temperature change, the study used the Pearson Correlation to calculate the correlation matrix (Table 1). The area size data extracted from the supervised classification for each year was analyzed using the R software environment for statistical computing [4]. The higher positive correlations were found between the ranges of temperature <25 Cand25 30 Cand high temperature of 30 33 Cand 33 C. The highest negative correlations were found between the temperature range of <25 Cand30 33 C and the higher temperature ranges (25 30 Cand 33 C). A high negative correlation was also found between the 25 30 C and 30 33 C temperature range. The higher positive correlation between land covers was found between areas of vegetation and bare soil and high correlation between impervious surface area (ISA) and water bodies. The highest negative correlation was between ISA and vegetated and ISA and bare areas. To relate the land cover patterns to surface urban heat, the correlations between the classes of land cover and LST were analyzed (Table 1). The best highest positive correlations were found between water, ISA areas, and temperatures 33 C. These findings were consistent with [6, 7]. Other positive correlations were found between bare areas and temperatures between 25 and 30 C. However, these correlations were not as high compared to what was found in ISA and water areas. The highest positive correlations with low temperatures were found in the classes of bare soil and vegetation. Conversely, vegetation and bare areas had a high negative correlation with high temperatures. As shown in Figures 2 and 4 and Table 1, changes in land cover patterns are highly correlated to changes in LSTs and the surface urban heat island (SUHI) effect. The impervious surface and water areas were found to contribute positively to LST rise, averagely through the three examined dates, with percentage contributions of moderate 60% to high 90% (Figure 6). Consequently, this might lead to SUHI effect because the growth of impervious surfaces coincided with an increase in temperatures. However, vegetation and bare areas contributed negatively to SUHI effect.

6 International Atmospheric Sciences Contributions to LST change (%) 100 90 80 70 60 50 40 30 20 10 0 4.8 25 1 60.84 34.8 64 9 94.09 1 15.2 5.29 49 11.56 36 0.04 ISA Water Veg. Bare <25 25 30 Land cover types 30 33 33 Figure 6: Separate contributions of land cover types to surface temperature change. 4. Conclusion In this paper, qualitative and quantitative analyses were performed to study the relationship between land cover changes and SUHIs. The local-scale analyses focused on the city of Abeokuta, and the following conclusions were made: (1) the distribution of surface heat in the urban area of Abeokuta has changed from a mixed pattern to urban heat as the impervious areas expanded rapidly in the city since almost 13% of the area of the city changed to high LST ( 33 C); (2) land cover patterns and changes contributed to the variations in the microclimate and affected the SUHI intensity primarily through an extension of urban core to the rural areas, soil impaction, and deforestation; (3) SUHIs were proportionally related to water bodies (r = 0.97) because the slight expansion of the major water body (River Lafenwa) located in the city centre brings about increase in the surface temperature and ISA (r = 0.78) which includes buildings, roads, rock surfaces, parking lots, and other paved surfaces; (4) quantitative analysis among temperature and land cover patterns showed that increasing impervious surface areas will result in LST rise and consequently SUHIs. However, vegetation reduces the LST. Thus, future city planning should focusonurbangreening.(5)itissuggestedthatrepresentative land cover indices can be used together as independent factors in a multiple regression equation model in order to evaluate the effectiveness of land covers as indicators to LST change in a more robust way. Moreover, the change in LST does not fully explain the surface urban heat islands phenomenon as it has been used in this study, but LST is considered one of the important land surface components contributing to surface urban heat. Thus, the calculation of surface urban heat requires data from a comparative geography (e.g., rural versus urban), which was beyond the scope of the study. 72.25 Acknowledgments The authors thank the United States Geological Survey (USGS) for assisting this research with datasets. References [1] Population Division. Department of Economic and Social Affairs. United Nations, World Urbanization Prospects: The 2005 Revision, United Nations, New York, NY, USA, 2006. [2] A. Chudnovsky, E. Ben-Dor, and H. Saaroni, Diurnal thermal behavior of selected urban objects using remote sensing measurements, Energy and Buildings, vol. 36, no. 11,pp. 1063 1074, 2004. [3] Y. Wang, Y. Zhou, and X. Zhang, The SPLIT and MASC models for extraction of impervious surface areas from multiple remote sensing data, in Remote Sensing of Impervious Surfaces, Q. Weng,Ed.,pp.77 93,CRCPress,BocaRaton,Fla,USA,2007. [4] I.OgashawaraandV.S.B.Bastos, Aquantitativeapproachfor analyzing the relationship between urban heat islands and land cover, Remote Sensing,vol.4,no.11,pp.3596 3618,2012. [5] X. Zhou and Y.-C. Wang, Dynamics of land surface temperature in response to land-use/cover change, Geographical Research,vol.49,no.1,pp.23 36,2011. [6] T. A. Oke, The energetic basis of the urban heat island, Quarterly the Royal Meteorological Society, vol.108, pp. 1 24, 1982. [7] F. Yuan and M. E. Bauer, Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery, Remote Sensing of Environment,vol.106,no.3,pp.375 386,2007. [8] G. Chander and B. Markham, Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 11, pp. 2674 2677, 2003. Competing Interests The authors declare that they have no competing interests.

International Ecology Geochemistry Mining The Scientific World Journal Scientifica Earthquakes Paleontology Journal Petroleum Engineering Submit your manuscripts at Geophysics International Advances in Mineralogy Geological Research Advances in Geology Climatology International Advances in Meteorology International Atmospheric Sciences International Oceanography Oceanography Applied & Environmental Soil Science Computational Environmental Sciences