ON A FUNCTIONAL EQUATION ASSOCIATED WITH THE TRAPEZOIDAL RULE - II

Similar documents
STABILITY OF n-th ORDER FLETT S POINTS AND LAGRANGE S POINTS

arxiv:math/ v1 [math.fa] 12 Nov 2005

MIXED TYPE OF ADDITIVE AND QUINTIC FUNCTIONAL EQUATIONS. Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee

Alireza Kamel Mirmostafaee

Zygfryd Kominek REMARKS ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATIONS

MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS

On generalized Flett s mean value theorem 1

Yet another variant of the Drygas functional equation on groups

CONTINUOUS DEPENDENCE ESTIMATES FOR VISCOSITY SOLUTIONS OF FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS

On a Cauchy equation in norm

Young Whan Lee. 1. Introduction

STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION

Georgian Mathematical Journal 1(94), No. 4, ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL SYSTEMS

In [13], S. Sedghi, N. Shobe and A. Aliouche have introduced the notion of an S-metric space as follows.

STABILITY OF THE COSINE-SINE FUNCTIONAL EQUATION WITH INVOLUTION

Chapter 3 Second Order Linear Equations

Chapter 4. Inverse Function Theorem. 4.1 The Inverse Function Theorem

APPROXIMATION OF ENTIRE FUNCTIONS OF SLOW GROWTH ON COMPACT SETS. G. S. Srivastava and Susheel Kumar

RED. Name: Math 290 Fall 2016 Sample Exam 3

17.2 Nonhomogeneous Linear Equations. 27 September 2007

arxiv: v1 [math.ca] 7 Aug 2015

MS 2001: Test 1 B Solutions

CHAPTER 2 POLYNOMIALS KEY POINTS

On stability of the general linear equation

CHINI S EQUATIONS IN ACTUARIAL MATHEMATICS

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions

2. Function spaces and approximation

Fixed Point Theorems for -Monotone Maps on Partially Ordered S-Metric Spaces

A Note on the Central Limit Theorem for a Class of Linear Systems 1

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0

SOLUTION OF WHITEHEAD EQUATION ON GROUPS

CLOSED RANGE POSITIVE OPERATORS ON BANACH SPACES

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

COMMON FIXED POINT THEOREMS OF CARISTI TYPE MAPPINGS WITH w-distance. Received April 10, 2010; revised April 28, 2010

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

A WHITNEY EXTENSION THEOREM FOR CONVEX FUNCTIONS OF CLASS C 1,ω.

MAPS WHICH CONVERGE IN THE UNIFORM C 0 -NORM

March Algebra 2 Question 1. March Algebra 2 Question 1

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

1 Systems of Differential Equations

Centers of projective vector fields of spatial quasi-homogeneous systems with weight (m, m, n) and degree 2 on the sphere

Non-Archimedean Stability of the Monomial Functional Equations

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 8 SOLUTIONS

Math 421, Homework #9 Solutions

On the stability of the functional equation f(x+ y + xy) = f(x)+ f(y)+ xf (y) + yf (x)

Stability of Adjointable Mappings in Hilbert

Some Generalizations of Caristi s Fixed Point Theorem with Applications

arxiv: v1 [math.fa] 17 May 2013

UNIFORM BOUNDS FOR BESSEL FUNCTIONS

ALGEBRAIC GEOMETRY HOMEWORK 3

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review

Unbounded solutions of an iterative-difference equation

Common Fixed Point Theorems for Multivalued β -ψ-contractive Mappings

COURSE Numerical integration of functions

APPLICATIONS OF DIFFERENTIABILITY IN R n.

arxiv: v1 [math.fa] 30 Sep 2007

STRONG NORMALITY AND GENERALIZED COPELAND ERDŐS NUMBERS

PM functions, their characteristic intervals and iterative roots

The Australian Journal of Mathematical Analysis and Applications

Math Circles: Number Theory III

INNER INVARIANT MEANS ON DISCRETE SEMIGROUPS WITH IDENTITY. B. Mohammadzadeh and R. Nasr-Isfahani. Received January 16, 2006

Extra Problems and Examples

Lacunary Polynomials over Finite Fields Course notes

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n

A NOTE ON FOUR TYPES OF REGULAR RELATIONS. H. S. Song

SCHUR-CONVEXITY AND SCHUR-GEOMETRICALLY CONCAVITY OF GINI MEAN

Successive Derivatives and Integer Sequences

Probability and Measure

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

arxiv:math/ v1 [math.fa] 1 Dec 2005

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y =

The homotopies of admissible multivalued mappings

Optimal Transportation. Nonlinear Partial Differential Equations

Vector Spaces. EXAMPLE: Let R n be the set of all n 1 matrices. x 1 x 2. x n

Polynomials Characterizing Hyper b-ary Representations

+ (k > 1) S. TOPURIA. Abstract. The boundary properties of second-order partial derivatives of the Poisson integral are studied for a half-space R k+1

Mathematics for Engineers II. lectures. Differential Equations

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

A IMPROVEMENT OF LAX S PROOF OF THE IVT

Topological Properties of Operations on Spaces of Continuous Functions and Integrable Functions

LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS. Fourth Edition, February by Tadeusz STYŠ. University of Botswana

THE MULTIPLICATIVE ERGODIC THEOREM OF OSELEDETS

Zeroing the baseball indicator and the chirality of triples

KRASNOSELSKII TYPE FIXED POINT THEOREMS AND APPLICATIONS

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems

A note on the convex infimum convolution inequality

Senior Math Circles February 18, 2009 Conics III

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

Continuous Functions on Metric Spaces

The Contraction Mapping Principle

arxiv: v1 [math.ca] 31 Jan 2016

Analysis/Calculus Review Day 2

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

Solution: f( 1) = 3 1)

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

On the Local Convergence of Regula-falsi-type Method for Generalized Equations

Transcription:

Bulletin of the Institute of Mathematics Academia Sinica New Series) Vol. 4 009), No., pp. 9-3 ON A FUNCTIONAL EQUATION ASSOCIATED WITH THE TRAPEZOIDAL RULE - II BY PRASANNA K. SAHOO Astract In this paper, we find the solution f, f, f 3, f 4, f 5, g : R R of f y) g x) = y x) [f x) + f 3 sx + ty) +f 4 tx + sy) + f 5y)] for all real numers x and y. Here s and t are any two a priori chosen real parameters. This functional equation is a generalization of a functional equation that arises in connection with the trapezoidal rule for the numerical evaluation of definite integrals and is a generalization of a functional equation studied in [0].. Introduction Let R e the set of all real numers. The trapezoidal rule is an elementary numerical method for evaluating a definite integral a ft)dt. The method consists of partitioning the interval [a, ] into suintervals of equal lengths and then interpolating the graph of f over each suinterval with a linear function. If a = x o < x < x < < x n = is a partition of [a,] into n suintervals, each of length a n, then a ft)dt a n [fx o) + fx ) + + fx n ) + fx n )]. This approximation formula is called the trapezoidal rule. It is well known that the error ound for trapezoidal rule approximation is a ft)dt a n [fx o) + fx ) + + fx n ) + fx n )] K a)3 n Received April 9, 006 and in revised form Feruary 6, 008. AMS Suject Classification: Primary 39B. Key words and phrases: Additive map, functional equation, trapezoidal rule. 9

0 PRASANNA K. SAHOO [March where K = sup { f ) x) x [a,] }. It is easy to note from this inequality that if f is two times continuously differentiale and f ) x) = 0, then a ft)dt = a n [fx o) + fx ) + + fx n ) + fx n )]. This is oviously true if n = 3 and it reduces to a ft)dt = a 6 [fx o ) + fx ) + fx ) + fx 3 )]. Letting a = x, = y, x = x+y 3 and x = x+y 3 in the aove formula, we otain y x ft)dt = y x 6 [ fx) + f x + y 3 ) + f x + y 3 ) ] + fy). ) This integral equation ) holds for all x,y R if f is a polynomial of degree at most one. However, it is not ovious that if ) holds for all x,y R, then the only solution f is the polynomial of degree one. The integral equation ) leads to the functional equation gy) gx) = y x 6 [ fx) + f x + y 3 ) + f x + y 3 ) ] + fy) where g is an antiderivative of f. The aove equation is a special case of the functional equation f y) g x) = y x)[f x) + f 3 sx + ty) + f 4 tx + sy) + f 5 y)] 3) where s,t are two real a priori chosen parameters, and f,f,f 3,f 4,f 5,g : R R are unknown functions. It should e noted that if we consider n = in the approximation formula, then the functional equation )[ ) ] y x x + y gy) gx) = fx) + f + fy) 4 arrises analogously and it is a special case of gy) gx) = y x) [φx) + ψy) + hsx + ty)]. )

009] THE TRAPEZOIDAL RULE This functional equation was treated y Kannappan, Riedel and Sahoo [6] also see [9]) without any regularity conditions. Interested reader should see [-9, -] for related functional equations whose solutions are polynomials. The present paper is a continuation of the author s works in [0]. In this paper, our goal is to determine the general solution of the functional equation 3) assuming the unknown functions g,f,f,f 5 : R R to e twice differentiale and f 3,f 4 : R R to e four-time differentiale.. Some Auxiliary Results The following result from [0] will e instrumental in solving the functional equation 3). Lemma. Let s and t e any two a priori chosen real parameters. Suppose g : R R and f : R R are twice differentiale and k : R R is four time differentiale. The functions f,g,h,k : R R satisfy the functional equation 3), that is gy) hx) = y x) [fx) + k sx + ty) + k tx + sy) + fy)] for all x,y R if and only if hx) = gx) and ax + x + c if s = 0 = t ax + x + c if s = 0, t 0 ax + x + c if s 0, t = 0 3ax 4 + x 3 + cx + d + β)x + α if s = t 0 ax 3 + cx + β d)x + α if s = t 0 3 a i ist[s i + t i ]x i+ gx) = i= + [ i +s i +t i )a i ]x i+ + 0 x+c 0 if s t, s t) st i=0 5 a i ist[s i + t i ]x i+ i= + [ i +s i +t i )a i ]x i+ + 0 x+c 0 if s t, s t) =st i=0

PRASANNA K. SAHOO [March ax + 4η0) if s = 0 = t ax + ηtx) if s = 0, t 0 ax + ηsx) if s 0, t = 0 ax 3 + x + c d)x + β if s = t 0 fx) = 3ax + cx + β if s = t 0 3 [ a i ists i +t i ) s i +t i ) ] x i + x+ 0 if s t,s t) st i= 5 [ a i ists i +t i ) s i +t i ) ] x i + x+ 0 if s t,s t) =st i= ηx) if s = 0 = t ηx) if s = 0, t 0 ηx) if s 0, t = 0 a x ) 3 x ) 4 δ x s + d 4 if s = t 0 kx) = a x ) s d k x) if s = t 0 3 a i x i if s t, s t) st i=0 5 a i x i i=0 if s t, s t) = st where η : R R is an aritrary function, and a i i = 0,,,...,5), i i = 0,),a,, c, d, c 0, α, β, δ are aritrary real constants. Lemma. Let s and t e any two a priori chosen real parameters. Suppose φ : R R is twice differentiale. The functions φ,ψ : R R satisfy the functional equation y x) [ψx) + φsx + ty) φtx + sy) ψy)] = 0 4) for all x,y R if and only if ψx) = ωtx) + α + β if s = 0, t 0 ωsx) + α + β if s 0, t = 0 α if s = t ax + α if s = t 0 at s )x + t s)x + α if s t

009] THE TRAPEZOIDAL RULE 3 φx) = ωx) if s = 0, t 0 ωx) if s 0, t = 0 ωx) if s = t a x s + φ x) if s = t 0 ax + x + c if s t where ω : R R is an aritrary function, and a,,c,α,β are aritrary real constants. Proof. From 4) we have ψx) + φsx + ty) = φtx + sy) + ψy) 5) for all x,y R with x y. It is easy to see that 5) also holds in the case x = y. Letting y = 0 in 5), we otain ψx) = φtx) φsx) + α 6) where α is a constant given y α = ψ0). Letting 6) into 5), we see that φsx + ty) φsx) φty) = φsy + tx) φtx) φsy) 7) for all x,y R with x y. Now we consider several cases. Case. Suppose s = 0 and t 0. Then from 6), we have ψx) = φtx) + β + α 8) where the constant β is given y β = φ0). In this case, letting this ψx) in 8) into 5), we see that ψx) is a solution for any aritrary function φx). Case. Suppose s 0 and t = 0. This is case symmetric to Case and hence we have ψx) = φsx) + β + α and φx) = ωx) 9) where the constant β is given y β = φ0) and ωx) is an aritrary function.

4 PRASANNA K. SAHOO [March Case 3. Suppose s = t. Then from 6), we have ψx) = α 0) where the constant α is given y α = ψ0). In this case, letting this ψx) in 9) into 5), we see that ψx) is a solution for any aritrary function φx). Case 4. Suppose s = t 0. Then from 6), we have ψx) = φ sx) φsx) + α ) where the constant α is given y α = ψ0). From 7), we have φsx y)) φ sx y)) = φsx) φ sx) φsy) φ sy)) ) for all x,y R with x y. Defining Ax) = φsx) φ sx) 3) for all x R, we have from 3) Ax y) = Ax) Ay) 4) for all x,y R with x y. Letting x = 0 in 4), we otain A y) = Ay). 5) Replacing y y y in 4) and using 5) we have Ax + y) = Ax) A y) = Ax) + Ay) 6) for all x,y R. Hence A : R R is an additive function. Since φ is differentiale, A : R R is also differentiale and hence Ax) = ax 7) where a is an aritrary constant. From 3) and 7) we have φx) = a x + φ x) 8) s

009] THE TRAPEZOIDAL RULE 5 for all x R, and from ) we otain Replacing a y a, we have the asserted solution ψx) = ax + α. 9) φx) = a x s + φ x) and ψx) = ax + α. Case 5. Suppose s t 0. Differentiating 7) twice, first with respect to x and then with respect to y, we otain φ sx + ty) = φ sy + tx) 0) for all x,y R. Since s t, letting u = sx + ty and v = sy + tx we see that u and v are linearly independent and 0) yields φ u) = φ v) ) for all u,v R. Hence φ u) = a, where a is a constant. Integrating we have φx) = ax + x + c ) where,c are constants of integration. Using ) in 6), we otain ψx) = at s )x + t s)x + c. 3) Letting φx) in ) and ψx) in 3) into 5), we see that φx) and ψx) satisfy the functional equation with aritrary constants a,,c. Remark. For the case s = t, the unknown function φx) could not e determined explicitly. We have found the explicit form of φx) φ x). As the referee noticed, in this case the unknown function φx) is an aritrary function satisfying φx) φ x) = a x s. One can rephrase in this way to avoid explaining ignotum per ignotum ut it is asically the same as what we have in the lemma. 3. Main Result Now we present the solution of the functional equation 3).

6 PRASANNA K. SAHOO [March Theorem. Let s and t e any two a priori chosen real parameters. Suppose g,f,f,f 5 : R R are twice differentiale and f 3,f 4 : R R are four time differentiale. The functions g,f,f,f 3,f 4,f 5 : R R satisfy the functional equation 3), that is f y) g x) = y x) [f x) + f 3 sx + ty) + f 4 tx + sy) + f 5 y)] for all x,y R if and only if g x) = f x) and f x) = f x) = ax + x + c) if s = 0 = t ax + x + c) if s = 0, t 0 ax + x + c) if s 0, t = 0 3ax4 + x 3 + cx + β + d)x + α), if s = t 0 ax 3 + cx + β d)x + α ) if s = t 0 3csts + t)x 4 + 4dstx 3 + [γ + es + t)]x +[γ + α]x + δ x + ε 5asts 3 + t 3 )x 6 + 4sts + t )x 5 +3csts + t)x 4 + 4dstx 3 if s t, s t) st + [γ + es + t)]x + [γ + α]x +δ x + ε if s t, s t) = st ) ax + α + 4η0) if s = 0 = t ax + ηtx) + ωtx) + α + β) if s = 0, t 0 ax + ηsx) + ωsx) + α + β) if s 0, t = 0 ax 3 + x + c δ)x + β + α ) if s = t 0 3ax + cx + β + x + e ) if s = t 0 c[3sts + t) s 3 + t 3 )]x 3 + d[4st s + t )]x + γ x + δ + [ At s )x + B t s)x + D ] if s t, s t) st a[5sts 3 + t 3 ) s 5 + t 5 )]x 5 + [4sts + t ) s 4 + t 4 )]x 4 + c[3sts + t) s 3 + t 3 )]x 3 +d[4st s + t )]x + γ x + δ + [ At s )x + B t s)x + D ] if s t, s t) = st

009] THE TRAPEZOIDAL RULE 7 f 3 x) = f 4 x) = f 5 x) = a x 4 s ηx) + ωx)) if s = 0 = t ηx) + ωx)) if s = 0, t 0 ηx) + ωx)) if s 0, t = 0 ) 3 + x ) δ x d 4 + ωx) if s = t 0 a x ) s d x s) f4 x) if s = t 0, cx 3 + dx + ex + α + Ax + B x + C) if s t, s t) st ax 5 + x 4 + cx 3 + dx + ex + α + Ax + B x + C) if s t, s t) = st a x 4 s ηx) ωx)) if s = 0 = t ηx) ωx)) if s = 0, t 0 ηx) ωx)) if s 0, t = 0 ) 3 + x ) δ x d 4 ωx) if s = t 0 a x ) s d + x s) f3 x) if s = t 0 cx 3 + dx + ex + α Ax + B x + C) if s t, s t) st ax 5 + x 4 + cx 3 + dx + ex + α Ax + B x + C) c[3sts + t) s 3 + t 3 )]x 3 if s t, s t) = st ) ax α + 4η0) if s = 0 = t ax + ηtx) ωtx) α β) if s = 0, t 0 ax + ηsx) ωsx) α β) if s 0, t = 0 ax 3 + x + c δ)x + β α ) if s = t 0 3ax + cx + β x e ) if s = t 0 +d[4st s + t )]x + γ x + δ [ At s )x + B t s)x + D ] if s t, s t) st a[5sts 3 + t 3 ) s 5 + t 5 )]x 5 + [4sts + t ) s 4 + t 4 )]x 4 + c[3sts + t) s 3 + t 3 )]x 3 +d[4st s + t )]x + γ x + δ [ At s )x + B t s)x + D ] if s t, s t) = st where η,ω : R R are aritrary functions and A,B,C,D,a,,c,d,e,α,β,γ, δ, ε are aritrary real constants.

8 PRASANNA K. SAHOO [March Proof. Letting x = y in 3) we see that f x) = g x) for all x R. Hence 3) yields f y) f x) = y x)[f x) + f 3 sx + ty) + f 4 tx + sy) + f 5 y)] 4) for all x,y R. Interchanging x with y in the functional equation 4), we otain f y) f x) = y x)[f y) + f 3 sy + tx) + f 4 ty + sx) + f 5 x)] 5) for all x,y R. Adding 4) and 5), we get gy) gx) = y x)[fx) + k sx + ty) + k tx + sy) + fy)] 6) where fx) = f x) + f 5 x) kx) = [f 3x) + f 4 x)] gx) = f x). 7) Similarly, sutracting 5) from 4), we get for all x,y R, where y x) [ψx) + φsx + ty) φtx + sy) ψy)] = 0 8) { ψx) = f x) f 5 x) φx) = f 3 x) f 4 x). 9) Now we consider several cases. Case. Suppose s = 0 = t. Then from 7), 9), Lemma and Lemma, we otain f x) = ax + x + c f x) + f 5 x) = ax + 4η0) f 3 x) + f 4 x) = ηx) f x) f 5 x) = α f 3 x) f 4 x) = ωx), 30)

009] THE TRAPEZOIDAL RULE 9 where η,ω : R R are aritrary functions and a,,c,α are aritrary constants. Hence from 30) we have f x) = ax + x + c) ) f x) = ax + α + 4η0) f 3 x) = ηx) + ωx)) f 4 x) = ηx) ωx)) ) f 5 x) = ax α + 4η0). 3) Case. Suppose s = 0 and t 0. Then from 7), 9), Lemma and Lemma, we otain f x) = ax + x + c f x) + f 5 x) = ax + ηtx) f 3 x) + f 4 x) = ηx) f x) f 5 x) = ωtx) + α + β f 3 x) f 4 x) = ωx), 3) where η,ω : R R are aritrary functions and a,,c,α,β are aritrary constants. Hence from 3), we get f x) = ax + x + c) f x) = ax + ηtx) + ωtx) + α + β) f 3 x) = ηx) + ωx)) f 4 x) = ηx) ωx)) f 5 x) = ax + ηtx) ωtx) α β). 33) Case 3. Suppose s 0 and t = 0. Then from 7), 9), Lemma and Lemma, we otain f x) = ax + x + c f x) + f 5 x) = ax + ηsx) f 3 x) + f 4 x) = ηx) f x) f 5 x) = ωsx) + α + β f 3 x) f 4 x) = ωx), 34) where η,ω : R R are aritrary functions and a,,c,α,β are aritrary

0 PRASANNA K. SAHOO [March constants. Hence from 34), we get f x) = ax + x + c) f x) = ax + ηsx) + ωsx) + α + β) f 3 x) = ηx) + ωx)) f 4 x) = ηx) ωx)) f 5 x) = ax + ηsx) ωsx) α β). 35) Case 4. Suppose s = t 0. Then from 7), 9), Lemma and Lemma, we otain f x) = 3ax 4 + x 3 + cx + β + d)x + α f x) + f 5 x) = ax 3 + x + c δ)x + β f 3 x) + f 4 x) = a x ) 3 x ) δ x d ) 4 f x) f 5 x) = α f 3 x) f 4 x) = ωx), 36) where ω : R R is an aritrary function and a,,c,d,α,β,δ are aritrary constants. Hence from 36), we get f x) = 3ax4 + x 3 + cx + β + d)x + α) f x) = ax 3 + x + c δ)x + β + α ) f 3 x) = a x ) 3 x ) δ x d 4 + ωx) f 4 x) = a x ) 3 x ) δ x 4 s + d 4 ωx) f 5 x) = ax 3 + x + c δ)x + β α ). 37) Case 5. Suppose s = t 0. Then from 7), 9), Lemma and Lemma, we otain f x) = ax 3 + cx + β d)x + α f x) + f 5 x) = 3ax + cx + β f 3 x) + f 4 x) + f 3 x) + f 4 x) = a x s) d f x) f 5 x) = x + e f 3 x) f 4 x) f 3 x) + f 4 x) = x s, 38)

009] THE TRAPEZOIDAL RULE where a,, c, d, e, α, β are aritrary constants. Hence from 38), we get f x) = ax 3 + cx + β d)x + α ) f x) = 3ax + cx + β + x + e ) f 3 x) = a x s) d x s) f4 x) f 4 x) = a x s) d + x s) f3 x) f 5 x) = 3ax + cx + β x e ). 39) Case 6. Suppose s t 0 and s t) st. Then from 7), 9), Lemma and Lemma, we otain f x) = { 3csts + t)x 4 + 4dstx 3 + [γ + es + t)]x +[γ + α]x + δ x + ε } f x) + f 5 x) = c[3sts + t) s 3 + t 3 )]x 3 +d[4st s + t )]x + γ x + δ f 3 x) + f 4 x) = cx 3 + dx + ex + α) f x) f 5 x) = At s )x + B t s)x + D f 3 x) f 4 x) = Ax + B x + C, 40) where c,d,e,a,b,c,d,α,β,γ,δ, ε are aritrary constants. Hence from 40), we get f x) = 3csts + t)x 4 + 4dstx 3 + [γ + es + t)]x +[γ + α]x + δ x + ε f x) = c[3sts + t) s 3 + t 3 )]x 3 + d[4st s + t )]x +γ x + δ + [ At s )x + B t s)x + D ] f 3 x) = cx 3 + dx + ex + α + Ax + B x + C) f 4 x) = cx 3 + dx + ex + α Ax + B x + C) f 5 x) = c[3sts + t) s 3 + t 3 )]x 3 + d[4st s + t )]x +γ x + δ [ At s )x + B t s)x + D ]. 4) Case 7. Suppose s t 0 and s t) = st. Then from 7), 9),

PRASANNA K. SAHOO [March Lemma and Lemma, we otain f x) = { 5asts 3 + t 3 )x 6 + 4sts + t )x 5 +3csts + t)x 4 + 4dstx 3 + [γ + es + t)]x +[γ + α]x + δ x + ε } f x) + f 5 x) = a[5sts 3 + t 3 ) s 5 + t 5 )]x 5 + [4sts + t ) s 4 + t 4 )]x 4 + c[3sts + t) s 3 + t 3 )]x 3 +d[4st s + t )]x + γ x + δ f 3 x) + f 4 x) = ax 5 + x 4 + cx 3 + dx + ex + α) f x) f 5 x) = At s )x + B t s)x + D f 3 x) f 4 x) = Ax + B x + C, 4) where a,,c,d,e,a,b,c,d,α,β,γ,δ,ε are aritrary constants. Hence from 40), we get f x) = 5asts 3 + t 3 )x 6 + 4sts + t )x 5 + 3csts + t)x 4 +4dstx 3 + [γ + es + t)]x + [γ + α]x + δ x + ε f x) = a[5sts 3 + t 3 ) s 5 + t 5 )]x 5 + [4sts + t ) s 4 + t 4 )]x 4 + c[3sts + t) s 3 + t 3 )]x 3 + d[4st s + t )]x +γ x + δ + [ At s )x + B t s)x + D ] f 3 x) = ax 5 + x 4 + cx 3 + dx + ex + α + Ax + B x + C) f 4 x) = ax 5 + x 4 + cx 3 + dx + ex + α Ax + B x + C) f 5 x) = a[5sts 3 + t 3 ) s 5 + t 5 )]x 5 + [4sts + t ) s 4 + t 4 )]x 4 + c[3sts + t) s 3 + t 3 )]x 3 + d[4st s + t )]x +γ x + δ [ At s )x + B t s)x + D ]. 43) Since there are no more cases are left, the proof of the theorem is now complete. Prolem. In Theorem, we have assumed that the functions f,f,f 5 : R R are twice differentiale and f 3,f 4 : R R are four time differentiale. The proof of Theorem heavily relies on this differentiaility assumption. Thus we pose the following prolem: Determine the general solution of the

009] THE TRAPEZOIDAL RULE - II 3 functional equation 3) without any regularity assumptions on the unknown functions f,f,f 3,f 4,f 5. Acknowledgments The work was partially supported y an IRI Grant from the Office of the Vice President for Research, University of Louisville. References. J. Aczel, A mean value property of the derivatives of quadratic polynomials without mean values and derivatives. Math. Mag., 58985), 4-45.. J. Ger, On Sahoo-Riedel equations on a real interval. Aequationes Math., 63 00), 68-79. 3. Sh. Haruki, A property of quadratic polynomials. Amer. Math. Monthly, 86979), 577-579. 4. PL. Kannappan, P. K. Sahoo, and M. S. Jacoson, A characterization of low degree polynomials. Demonstration Math., 8995), 87-96. 5. PL. Kannappan, T. Riedel and P. K. Sahoo, On a functional equation associated with Simpsons rule. Results in Mathematics, 3997), 5-6. 6. PL. Kannappan, T. Riedel and P. K. Sahoo, On a generalization of a functional equation associated with Simpson s rule. Prace Matematyczne, 5 998), 85-0. 7. T. Riedel and M. Salik, On a functional equation related to a generalization of Flett s mean value theorem. Internet. J. Math. & Math. Sci., 3000), 03-07. 8. T. Riedel and M. Salik, A different version of Flett s mean value theorem and an associated functional equation. Acta Mathematica Sinica, English Series, 0 004), 073-078. 9. P. K. Sahoo and T. R. Riedel, Mean Value Theorems and Functional Equations, World Scientific Pulishing Co., NJ, 998. 0. P. K. Sahoo, On a functional equation associated with the trapezoidal rule. Bull. Math. Acad. Sinica New Series), 007), 67-8.. L. Székelyhidi, Convolution Type Functional Equations on Topological Aelian Groups, World Scientific Pulishing Co., NJ, 99.. W. H. Wilson, On a certain general class of functional equations. Amer. J. Math., 4098), 63-8. Department of Mathematics, University of Louisville, Louisville, Kentucky 409 USA. E-mail: sahoo@louisville.edu