ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

Similar documents
Moment Generating Function

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

ECE 636: Systems identification

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Reinforcement Learning

Linear Time Invariant Systems

Actuarial Society of India

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

5.1-The Initial-Value Problems For Ordinary Differential Equations

EGR 544 Communication Theory

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

Lecture 15 First Properties of the Brownian Motion

SUMMATION OF INFINITE SERIES REVISITED

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

Math 6710, Fall 2016 Final Exam Solutions

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

The Central Limit Theorem

Section 8 Convolution and Deconvolution

Integration and Differentiation

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

Department of Mathematical and Statistical Sciences University of Alberta

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

STK4080/9080 Survival and event history analysis

Chapter 7 Infinite Series

1 Notes on Little s Law (l = λw)

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Functions, Limit, And Continuity

K3 p K2 p Kp 0 p 2 p 3 p

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Review of the Riemann Integral

4.8 Improper Integrals

Fractional Fourier Series with Applications

3. Renewal Limit Theorems

Boundary Value Problems of Conformable. Fractional Differential Equation with Impulses

ECE-314 Fall 2012 Review Questions

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

POWER SERIES R. E. SHOWALTER

Notes 03 largely plagiarized by %khc

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

0 for t < 0 1 for t > 0

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

Random variables. A random variable X is a function that assigns a real number, X(ζ), to each outcome ζ in the sample space of a random experiment.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Fourier Series and Applications

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

Problem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume

Solutions to Problems from Chapter 2

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

The Reimann Integral is a formal limit definition of a definite integral

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

e t dt e t dt = lim e t dt T (1 e T ) = 1

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations.

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

5.1 - Areas and Distances

lecture 16: Introduction to Least Squares Approximation

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

Math 104: Final exam solutions

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

6/10/2014. Definition. Time series Data. Time series Graph. Components of time series. Time series Seasonal. Time series Trend

We will begin by supplying the proof to (a).

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

MAS221 Analysis, Semester 2 Exercises

5 Probability densities

O & M Cost O & M Cost

Sequence and Series of Functions

Supplementary Information for Thermal Noises in an Aqueous Quadrupole Micro- and Nano-Trap

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

MA123, Chapter 9: Computing some integrals (pp )

On Absolute Indexed Riesz Summability of Orthogonal Series

Comparison between Fourier and Corrected Fourier Series Methods

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

Frequency-domain Characteristics of Discrete-time LTI Systems

Math 2414 Homework Set 7 Solutions 10 Points

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

Inference on One Population Mean Hypothesis Testing

Geometric Sequences. Geometric Sequence. Geometric sequences have a common ratio.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ECE 350 Matlab-Based Project #3

LIMITS OF FUNCTIONS (I)

UNIT I FOURIER SERIES T

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

Convergence theorems. Chapter Sampling

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

Lecture #6: Continuous-Time Signals

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Method: Step 1: Step 2: Find f. Step 3: = Y dy. Solution: 0, ( ) 0, y. Assume

Transcription:

The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x 3 8 8 8 8 3 3 x 3 8 8 8 8 The cd c be wrie compcly i erms o he ui sep ucio: x ux ( ) x 3 3 F u u( x ) u( x ) u( x 3) 8 8 8 8 Exmple: The Uiorm RV i he ui iervl [,]. x F x x x

Exmple: The wiig ime o cusomer xi sd is zero i he cusomer ids xi prked he sd, d uiormly disribued rdom legh o ime i he iervl [, ] (i hours) i o xi is oud upo rrivl. The probbiliy h xi is he sd whe he cusomer rrives is p. Fid he cd o. Use ol probbiliy heorem, F P[ x] P[ x id xi] p P[ x o xi]( p) x P[ x id xi] x x P[ x o xi] x x x bsic properies o he cd (i) F. (ii) lim F. x (iii) lim F. x x F p ( p) x x x (iv) F is odecresig ucio o x, h is, i b, F( ) F( b) (odecresig ucio). (v) F is coiuous rom he righ, h is, or h, F ( b) lim F ( b h) F ( b ). (vi) P[ b] F( b) F( ) (vii) P[ b] F( b) F( b ) (i F hs jump x = b). (viii) P[ x] F. The Three Types o Rdom Vribles h Discree rdom vribles: hve cd h is righ-coiuous, sircse ucio o x, wih jumps couble se o pois x, x, x,... F p ( x ) p ( x ) u( x x ) k k k xk x k Coiuous rdom vribles: is coiuous everywhere, d which, is suiciely smooh h i c be wrie s iegrl o some oegive ucio (x): x F dx P[ x] Rdom vrible o mixed ype: is rdom vrible wih cd h hs jumps o couble se o pois x, x, x,... bu h lso icreses coiuously over les oe iervl o vlues o x.

Cd: F pf ( p) F p, F : cd o discree RV; F : cd o co. RV The Probbiliy Desiy Fucio (pd) probbiliy desiy ucio o (pd) : df dx The pd represes he desiy o probbiliy he poi x: Properies: F( x h) F P[ x x h] F ( x h) F h h h (i) ( F is o-decresig ucio o x). b (ii) P[ x b] dx probbiliy o iervl [, b] x (iii) F ( ) d. (iv) dx. pd o Discree Rdom Vribles df p ( xk ) ( x xk ) dx k

Codiiol cd s d pd s codiiol cd o give C P[{ x} C] F ( x C) P[ C] PC [ ] codiiol pd o give C : df ( x C) ( x C) dx Exmple: The lieime o mchie hs coiuous cd F ( x ). Codiiol cd d pd give he eve C = { > } (mchie sill workig ime ) codiiol cd: P[{ x} { }] F ( x ) P[ ] x P[{ x} { }] P[ x] F F( ) x P[ ] P[ ] F ( ) F ( x ) F F( ) F ( ) x x codiiol pd: ( x ) x F ( ) cd o i erms o he codiiol cd s; priio o S: B, B,..., B F P[ x] P[ x B ] P[ B ] F ( x B ] P[ B ] i i i i i i ( x B ] P[ B ] i i i Exmple: A biry rsmissio sysem seds bi by rsmiig ( v) volge sigl, d bi by rsmiig (+v). Received sigl corruped by Gussi oise: Y = + N : he rsmied sigl, N is oise volge wih pd ( x ) N

Assume P[ ] = p = P[ ]. Fid he pd o Y. B = { is rsmied} B = { is rsmied}. F F ( x B ] P[ B ] F ( x B ] P[ B ] Y Y Y P[ Y x v]( p) P[ Y x v] p P[ Y x v] P[ N x v] F ( x v) P[ Y x v] P[ N x v] F ( x v) F F ( x v)( p) F ( x v) p Y N N dfy Y N ( x v)( p) N ( x v) p dx x ( xv) ( xv) N e Y e ( p) e p N N THE EPECTED VALUE expeced vlue or me o rdom vrible : E[ ] ( ) d exiss i E[ ] ( ) d Exmple: Me o Uiorm Rdom Vrible b E[ ] d b b b b I he pd is symmeric bou poi m: ( m x) ( m x) he E [] = m. Exmple: Me o Expoeil Rdom Vrible ( ) x [ ] x x x x e x E x e dx xe e dx Expeced Vlue o Y = g () : E[ Y ] g dx Exmple: Expeced Vlues o Siusoid wih Rdom Phse Y cos( ) where, d re coss; is uiorm i [, ]. expeced vlue o Y d expeced vlue o he power o Y, Y :

E[ Y ] E[ cos( )] cos( ) d si( ) E Y E E [ ] [ cos ( )] cos( ) Some properies: cos( ) d (i) E[] c c where c is cos. (ii) E[ c ] ce[ ] (iii) E gk( ) E[ gk( )] k k Vrice o VAR[ ] E ( m ) E[ ] m m E[ ] Sdrd Deviio: STD[ ] VAR[ ] Exmple: Vrice o uiorm RV b b ( b ) m E ( m) x dx b b Exmple: Vrice o he Gussi RV ( xm) ( xm) dx e dx e dx Diereie wih respec o : ( xm) ( xm) ( x m) ( ) 3 e dx x m e dx The h mome o he rdom vrible : E[ ] x dx

IMPORTANT RVs The uiorm RV Pd: x b b x, x b Cd x x F x b b x b me d vrice: The expoeil RV ( ) [ ] b VAR[ ] b E Pd: Cd: x x e x x F x e x me d vrice: E[ ] VAR[ ] memoryless propery: P[ h ] P[ h] proo: ( h) P[{ h} { }] P[ h] e h P[ h ] e P[ h] P[ ] P[ ] e The Gussi (Norml) Rdom Vrible Pd: ( xm) e x

Cd: ( um) F P[ x] e du x ( xm)/ x m u m F e d where x x e d pd o Gussi RV wih m = d =. Exmple: Show h Gussi pd iegres o oe. x x y ( x y ) e dx e dx e dy e dxdy x r cos, y rsi x y r dxdy rdrd ( x y ) r r e dxdy e rdrd e rdr The Q-ucio: Q e d x The Gmm Rdom Vrible x e Pd: For, x ( ) where ( ) z x z x e dx z he Gmm ucio properies: ( z ) z( z) z ( m ) m! m oegive ieger. Whe m, ieger : m-erlg RV

x y dx x e dx y x y e dy ( ) ( ) dx The Cuchy Rdom Vrible / hs o momes becuse he iegrls do o coverge. x FUNCTIONS OF A RANDOM VARIABLE Give Y = g() problem is o id he pd o Y i erms o he pd o. Exmple: Y b y b y b FY( y) P[ Y y] P[ b y] P[ ] F i y b y b P[ ] F i y b Y( y) y b Y( y) y b Y( y)

Exmple: Y = y P[ Y y] P y y y y FY ( y) F( y ) F( y ) y dy df y d y df y d y Y ( y) d y d y dy y y y y y I is Gussi wih me m =, d SD =, x y y Y e y e ( y) e y y (chi-squre rv wih oe degree o reedom) Geerl Cse Soluios o y g : x, x,..., x Le = 3,

P[ y Y y dy] P[ x x dx ] P[ x dx x ] P[ x x dx ] 3 3 3 ( y) dy ( x ) dx ( x ) dx ( x ) dx Y 3 3 ( x) ( x3) Y ( y) dy / dx dy / dx dy / dx xx xx xx3 I geerl, ( y) Y k ( xk) g( x ) k Previous exmple: Y = y x soluios or y : x y x y g x g( x ) y g( x ) y g( x ) g( x ) y y y y ( x) e e e Y ( y) g( x) g y y y Exmple: Y = cos() : uiormly disribued i [,], x y cos Two soluios i [, ] x cos ( y) x cos ( y) g si g( x) si cos ( y) g si cos ( y) cos ( y) y cos( ) si( ) cos ( ) y g( x ) g( x ) y

Y ( y) y y y y THE MARKOV AND CHEBYSHEV INEQUALITIES Mrkov iequliy: E [ ] P[ ] is o-egive. This boud is useul i we do hve y iormio bou he RV excep is me vlue. Proo: E[ ] ( ) d ( ) d ( ) d ( ) d ( ) d ( ) d P[ ] I oly he me d vrice re kow: The Chebyshev iequliy: igher boud h Mrkov. P m Proo: Le ED [ ] D ( m) Mrkov iequliy E[ D ] Exmple: Muli-user compuer sysem; me respose ime m = 5 s sdrd deviio = 3 s Esime he probbiliy h he respose ime is more h 5 secods rom he me. Chebyshev iequliy 9 5 s P 5 5.36 5 The Chero boud: Le A = { }. Idicor ucio o A, IA() P[ ] I ( ) ( ) d A

Choose he boud or he idicor ucio s I A( ) or ll E[ ] I A( ) ( ) d ( ) d Le he boud be : Mrkov iequliy. I e s s( ) A( ) s( ) s s s s I A( ) ( ) d e ( ) d e e ( ) d e E[ e ] s s P[ ] e E[ e ] : he Chero boud The Chrcerisic Fucio: Coiuous RVs j jx ( ) E[ e ] e dx Fourier rsorm o he pd jx ( ) e d Iverse Fourier rsorm Discree RVs: j xk ( ) p ( x ) e k k ( ) p ( k) e jk : ieger-vlued RVs k jk p( k) ( ) e d Exmple: Expoeil RV x jx ( j) x ( ) e e dx e dx j Exmple: Geomeric RV k jk j k p ( ) pq e p ( qe ) qe k k j

The mome Theorem: d E [ ] ( ) j d Proo: Tylor series expsio o j x e jx ( jx) e jx...! jx ( jx) ( ) e dx jx... dx! ( j) j x dx x dx...! ( j) ( j) ( ) je[ ] E[ ]... E[ ]...!! Compre wih he Tylor series expsio o ( ) bou = : ( ) () ( j) ( ) d E[ ] E[ ] () ( )!! j j d Exmple: me d vrice o expoeilly disribued rdom vrible j ( ) ( ) E [ ] () j ( j) j ( ) E[ ] () VAR[ ] 3 ( j) j RELIABILITY The relibiliy ime is deied s he probbiliy h he compoe, subsysem, or sysem is sill ucioig ime : R( ) P[ T ] T: lieime o sysem R( ) P[ T ] FT ( ) FT () : cd o T. R( ) ( ) T The me ime o ilure (MTTF) is give by he expeced vlue o T: E[ T ] ( ) d R( ) d R( ) d T The codiiol cd o T give h T > :

FT ( x T ) P[ T x T ] FT FT( ) FT ( ) x x T T ( x T ) x F ( ) T R() The ilure re ucio r() : r( ) T ( T ) R () r() d = he probbiliy h compoe h hs ucioed up o ime will il i he ex d secods. Exmple: Expoeil Filure Lw cos ilure re ucio : R() r( ) iiil codiio R() R () dr R() d l R( ) e R R() Relibiliy o Sysems ( ) e : T is expoeilly disribued RV. T A s : he eve sysem ucioig ime A j : he eve jh compoe is ucioig ime Series Coecio: P[ A ] P[ A A... A ] P[ A ] P[ A ]... P[ A ] s R( ) R ( ) R ( )... R ( ) I sysems hve cos ilure res: ( ) i R e R( ) e i (... ) Prllel Coecio: The sysem will o be ucioig i d oly i ll he compoes hve iled.

P[ A ] P[ A ] P[ A ]... P[ A ] c c c c s R( ) R ( ) R ( )... R ( ) R( ) R ( ) R ( )... R ( ) Exmple: Compre he relibiliy o sigle-ui sysem gis h o sysem h operes wo uis i prllel. Assume ll uis hve expoeilly disribued lieimes wih re. sigle-ui sysem: R () s e wo uis i prllel: R ( ) ( e )( e ) e ( e ) e p R ( ) R ( ) p s