Sample Exam 1: Chapters 1, 2, and 3

Similar documents
An Example file... log.txt


4.3 Laplace Transform in Linear System Analysis

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Framework for functional tree simulation applied to 'golden delicious' apple trees

Vectors. Teaching Learning Point. Ç, where OP. l m n

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Examination paper for TFY4240 Electromagnetic theory

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

This document has been prepared by Sunder Kidambi with the blessings of

Planning for Reactive Behaviors in Hide and Seek

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Optimal Control of PDEs

An Introduction to Optimal Control Applied to Disease Models

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

New method for solving nonlinear sum of ratios problem based on simplicial bisection

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

ETIKA V PROFESII PSYCHOLÓGA

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

A Study on Dental Health Awareness of High School Students

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

The New Technique and Application of Pile-cap Treatment on DH-PHC pile


Automatic Control III (Reglerteknik III) fall Nonlinear systems, Part 3

F O R SOCI AL WORK RESE ARCH

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Loop parallelization using compiler analysis

A Functional Quantum Programming Language

Optimal data-independent point locations for RBF interpolation

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

Damping Ring Requirements for 3 TeV CLIC

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

Full file at 2CT IMPULSE, IMPULSE RESPONSE, AND CONVOLUTION CHAPTER 2CT

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Matrices and Determinants

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

6. Convert 5021 centimeters to kilometers. 7. How many seconds are in a leap year? 8. Convert the speed 5.30 m/s to km/h.

Manifold Regularization

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

MARKET AREA UPDATE Report as of: 1Q 2Q 3Q 4Q

Rarefied Gas FlowThroughan Orifice at Finite Pressure Ratio

Research of Application the Virtual Reality Technology in Chemistry Education

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

Optimization of a parallel 3d-FFT with non-blocking collective operations

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

SOLAR MORTEC INDUSTRIES.

Towards a High Level Quantum Programming Language

APPH 4200 Physics of Fluids

New BaBar Results on Rare Leptonic B Decays

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

Testing SUSY Dark Matter

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

!!"# $% &" ( )

R for beginners. 2 The few things to know before st. 8 Index 31

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

Winstar Display Co., LTD

Redoing the Foundations of Decision Theory

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

15 hij 60 _ip = 45 = m 4. 2 _ip 1 huo 9 `a = 36m `a/_ip. v 41

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

2 Hallén s integral equation for the thin wire dipole antenna

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

ELEG-636: Statistical Signal Processing

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

Building Products Ltd. G Jf. CIN No. L26922KA199SPLC018990

Ed S MArket. NarROW } ] T O P [ { U S E R S G U I D E. urrrrrrrrrrrv

Exponentially Rare Large Fluctuations: Computing their Frequency

Glasgow eprints Service


Precision calculations for

Constructive Decision Theory

The Synthesis of Zeolite Using Fly Ash and its Investigate Adsorption Character

The Fourier series are applicable to periodic signals. They were discovered by the

Continuous-time Fourier Methods

Surface Modification of Nano-Hydroxyapatite with Silane Agent

SCOTT PLUMMER ASHTON ANTONETTI

cº " 6 >IJV 5 l i u $

Final exam: Automatic Control II (Reglerteknik II, 1TT495)

Stochastic invariances and Lamperti transformations for Stochastic Processes

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

H A H i g h A v a i l a b i l i t y H A H A C l i e n t S y s t e m A v a i l a b i l i t y

Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

DISSIPATIVE SYSTEMS. Lectures by. Jan C. Willems. K.U. Leuven

A General Procedure to Design Good Codes at a Target BER

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

Port Vintage. Foundry: Onrepeat Types Website: Designer: João Oliveira INTRO PORT VINTAGE REGULAR

Synchronizing Automata Preserving a Chain of Partial Orders

A Theory of Universal AI

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

Evaluation of the reconstructing scheme making streets one-way

Transcription:

L L 1 ' ] ^, % ' ) 3 Sample Exam 1: Chapters 1, 2, and 3 #1) Consider the lineartime invariant system represented by Find the system response and its zerostate and zeroinput components What are the response steady state and transient components #1b) Using the linearity and time invariance principle (note that you have to assume zero initial conditions) find the response of the system defined in #1a) due to the input signal equal to #2a) Using the properties of the impulse delta function simplify the following expressions!!! 21 %,!"$#&%(')* #%43+) 5 687 :( * = 1+<!!+, % > +!? %' +* 0/ #&%@'+)BA>C5( /* =D/+ #2b) Plot the graph of the signal represented in terms of unit step and unit ramp signals as E F and find its generalized derivative G H JI KG =HL #3a) Find the Fourier series of a periodic signal represented by E F E J =NM LOPLQH RQS 2TQH UQVL #3b) Find the system response due to the periodic input signal given in #3a) of a linear system YX&ZU[ whose transfer function is W #3c) Using the tables of common pairs 1\ ]K^ and properties of the Fourier transform find Fourier transforms of the following signals:!+_ +# %@3a`)` +!!b# %@3+) KBA>C5( @c!!! #3d) Find the inverse Fourier transform of the signals!" XZ A>C5( ZU# %!!", d dh efe g!? Z @c 1

n n Ž n ~ Sample Exam 2: Chapters 1, 2, and 3 #1) Consider the lineartime invariant system represented by ibjklkm i l jklmfoqp ryskltumvgjkxwymfoqw Find the system response and its zerostate and zeroinput components What are the response steady state and transient components #2a) Using the properties of the impulse delta signal simplify the following expressions kz+mk l t{m }k l=th{mvhkz z+m~ kz m ~ Ž ~ƒ 4 p r sku&l>m}kl=tdum+ilv pfk lkm+} ˆŠ " "kl ts{&m+i l>vhkzz z+m k mq klm}ˆ K "kl p rysk+ (lm}ku&l=tm+i l #2b) Plot the graph of the signal represented in terms of unit step, rectangular, and unit ramp signals as and find its generalized derivative klmfoqškltdum klœt #3a) Find the Fourier series for the sawtooth signal with Ÿ Hint: lyprysk œl>milo { prysk œlmœt m td ktužl l ym nh o {vk on{ mil Note it is an odd signal #3b) Find the liner system response due to the periodic input > signal defined in 3a) The system k Um o transfer function is K #3c) Using the tables of common pairs and properties of the Fourier transform find Fourier transforms of the following signal: kz"mp rysk+ lkm"ª«f kl=t m t f kl=ts{ m vgk+zz m_l @ k lkm>v kz zz m$p r s ku&l=tdžm p(k œl>m #3d) Find the inverse Fourier transform of the signal ± ky² ³mFoq k Um tµ k t{m #3e) Find the response of the system defined in 3b) due to the input signal > pf "{awl ņ @¹ 2

Ê Ð Ð Ê Sample Exam 3: Chapters 4 and 5 1) Find the Laplace transform of the following signals º¼» ½ ¾K FV½¾ ÁHÂ Ã Ä ÅÆ ½¾ ÇS& º&Ê ½¾ FqË>ÌBÍ ½Î(¾> Æ ½¾=Ç >2º Ï&½¾K FqоÃÄ ÅyÍ Ñ8Ò½Ó¾K +Æ(½ ¾K 2) Find the inverse Laplace transform of the following function Ô ½Õ F ÂÕUÁà Ä4 Õ Ê ½ÕGÁq 3) Find the transform of the following signals º»&Ø«ÙÚ qóûü ½ Ù ÁHÂ Æ Ø«Ù ÇDÂ Ú º Ê&Ø0ÙÚ Ù Ë>ÌBÍ Ù Î Â Æ Ø«ÙÚ _º Ï ØàÙÚ âá ã ä  ٠qå æ Ù qç è Ì&éK@ ìí³ñîí" 4) Find the inverse transform of the following function Ô ½Kï æ ½ïÁ ½ïÁ K½ïÁJÓy +½ïÁåy Using the initial and final values theorems verify the values obtained for º Ø è Ú and º Ø ðú 5) Consider a continuoustime system ñ Ê>ò ½¾ ñ ¾ Ê ÁÐ ñ ò ½ ¾K ñ ¾ ÁJç ò ½¾ FqÓ ñ ºœ½ ¾K ñ ¾ ÇDºœ½+¾ òôó è Ä õ ö ò»kø ó è Äùõ è ºù½ ¾K FÃ Ä Å Æ ½¾ Find its transfer function (1pt), impulse response (1pt), step response (1pt), zerostate (1pt), and zeroinput (1pt) responses 6) Consider a discretetime system ò Ø0ÙÚ Ç ò Ø0Ù ÇS Ú Ç ò Ø0Ù Ç Â Ú qº Ø«Ù ÇH Ú Áº Ø«Ù ÇDÂ Ú ò Ø ÇÂ Ú Ç ò Ø Çú Ú è º Ø0ÙÚ û½kçp& Û Æ Ø«ÙÚ Find the system transfer function (1pt), impulse response (1pt), zerostate (1pt), and zeroinput (1pt) responses What is the system steady state response due to º Ø«ÙÚ öå Æ Ø«ÙyÚ (1pt)? Hint: Ë>ÌBÍ(½üþýÿ ú Ë>ÌÍ(½ü yë>ìí@½ ÿ Í Ñ Ò ½+ü yí ÑYÒ½ÿ 3

! 4 B <! 4 < H B Sample Exam 4: Chapters 4 and 5 #1a) Find the Laplace transform of the following signals! "#%$&(') *",+ /0) 1234 5 "#768!:% < ) 1 #1b1) Find the time domain component of the inverse Laplace transform that corresponds to the pole located at the origin = ># > @> A " >!/? 23@ > 3/ @> @ @> 0B #1b2) Find the inverse Laplace transform of the function =! ># 5? > >! A #2a) Find the C transform of the following signals +ED34FGIHKJ D 2L@M+DL4N!+DL4F$&('POQD * 2R M+DS 4T 5I+UDL4MWV X Y DZ [B \]NDZ%2I^ _ &a`/bckd/egf'@c #2b) Find the inverse C transform of the following function = /hl h h A 2L hi Can you apply the initial and final values theorems to the function = @hl If yes, find j+ _ 4 and j+lkm4 #3a) Consider a continuoustime system n!ko " n! pb n o / n o /#% q " o 6 _ G2 or @s 6 q " " Find its transfer function, impulse response, step response, zerostate, zeroinput, and steady state responses #3b) Consider a discretetime system o +EDL4 o +EDt o +wx2 4)G2 o +l o +UDu24MG +Dt 4F j+edl4mtyj Mz j+dvm24 M+DL4 Find the system transfer function, impulse response, zeroinput, and zerostate responses Hint: $&(' {} 0~i7$&L' {3$&L' ~# A'fQ ƒ @{3'fQ x ~ 4

¼» ˆ ¼ à ˆ Sample Exam 5: Chapters 6, 8, and 12 1) Convolve graphically continuoustime signals /ˆ and Š K 1 pˆ 2) Using the sliding tape method find the discretetime convolution IŽ E L g Ž E L, where Ž U 3 ) š œ x Z% Z% Z ZA Z%ž Ÿa / [ @ g, 3) Consider the continuoustime linear system represented in the state space form by L ª Ž "ˆ ª "Ϋª Ž "ˆ P «ª /ˆ«u )«"ˆ E ª Ž L ˆ ª @ Ϋœ]«a) Find the system transfer function b) Find the system impulse response c) Find the system transition matrix using the Laplace transform d) Find the system output response ( "ˆ ) due to the system input q "ˆ±³² /µ /ˆ 4) Consider the discretetime linear system represented in the state space form by ª Ž U ª U «ª Ž E L œ x «ª E 3 «L F w j «ª Ž U L ª U L K«q "ˆ ª Ž "ˆ ª /ΫL ª Ž E ª ««a) Find the system transfer function b) Find the system transition matrix c) Find the system output response ( U L ) due to the system input L @¹Ežaˆº E 3 5) The openloop system transfer function is given by 8¼ˆ# Assuming the unity feedback system, find the sensitivity function of the closedloop system with respect to parameter ½ p½ Hints: ² F¾/µ "ˆ: p Á ² ¾/µ "ˆ: ¼  º E L à à º U L à 5

ì ÛÙÙÙ ø î Î Ô Î ÛÙÙÙ î Sample Exam 6: Chapters 6, 8, and 12 #1a) Convolve graphically continuoustime signals ÄÅ[ÆÇpIÊËLÌ and ÄÍ ÆÇ/ÌjÎÂÏŠÍ ÆÇ"Ì #1b) Using the sliding tape method find the discretetime convolution Ð ÑÒUÓÔÕ±Ð Í ÒEÓ3Ô, where ÓÜ% ÓÜ Ú ÓÜ Ú ÓÜ Ð Ñ ÒEÓLÔØ ÙÙÙ ÓÜ ÐÍÒEÓLÔØ ÙÙÙ ÓÜAà ÓÜAà œ ÓÜ%Ë áiâ/ãä åæèçé@äm áiâ"ãäkå"ægçé@ä #2A) Consider the continuoustime linear system represented in the state space form by Lì í Ñ ÆÇ/Ì í Í ÆÇ/Ìî í Ñ ÆÇ"Ì í Í ÆÇ"ÌIî ð ÆÇ"Ì Ò jô )î ÐMÆÇ/Ì í Ñ ÆÇ"Ì í Í ÆÇ/Ì î í Ñ ÆLïÌ í Í Æ3ïÌ î a) Find the system transition matrix ñ\æòì, and obtain ñpæç"ì using the Laplace inverse transform b) Find the system transfer function c) Find the system state response for ÐqÆÇ"Ì\³óaÆÇ"Ì and the given initial conditions d) Find the system output response ( ð ÆÇ/Ì ) due to ÐqÆÇ"Ì#õô ï Å/ö ÆÇ/Ì and the given initial conditions #2B) Consider the discretetime linear system represented in the state space form by í Ñ ÒUÓvÎA Ô í ÍÒUÓtÎA Ô î Ñ í Ñ ÒEÓLÔ úù ø î í ÍÒEÓ3Ô î ð ÒÓLÔF ÒE î ÐÒÓLÔ í Ñ ÒUÓLÔ í Í ÒUÓLÔ î í Ñ ÒUÔ í ÍÒUÔ î jî a) Find the system transition matrix ñ\æû3ì Obtain ñxòeó3ô via the ü transform b) Find the system transfer function c) Find the system output response ( ð ÒEÓ3Ô ) due to ÐjÒEÓLÔM7ý" Ñ þ(ÿ ÒÓLÔ and the given initial conditions d) Given the system represented by ð ÒEÓœÎÂËÔÎ ð ÒÓiÎmàIÔ ð ÒEӜΠFind the system state space form Ô ð ÒEÓtÎ ÔÎ ð ÒUÓiÎGKÔ #3) The system openloop system transfer function is given by Æ@òÌ# òæògîgì"æò\î Ì"Æò\Î0Ë3Ì ð ÒÓLÔM%ÐjÒEӜΠÔ(Îmà(ÐjÒEÓLÔ Assuming the unity feedback system and the system asymptotic stability for some values of the static gain, find the steady state step, ramp, and parabolic errors in terms of Hint: Some common pairs: ÆÇ/Ì ò ô ï ö ÆÇ"Ì ògî Ç@ô ï ö ÆÇ"Ì ÆògÎÌ Í ÒÓLÔ û ûœ Ó ÒÓLÔ Lû Æ@ûƒÌ Í 6