Morphology and Anatomy of Winter Bud of Pteridophyllum racemosum (Pteridophyllaceae)

Similar documents
Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

京都 ATLAS meeting 田代. Friday, June 28, 13

Taking an advantage of innovations in science and technology to develop MHEWS

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Illustrating SUSY breaking effects on various inflation models

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

The unification of gravity and electromagnetism.

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

Incompatibility and Reproductive Output in Distylous Psychotria boninensis (Rubiaceae), Endemic to the Bonin (Ogasawara) Islands, Japan

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

Hiroshi Ikeda a, *, Akiko Shimizu a, Makoto Ogawa b, Yasushi Ibaragi b and Shinobu Akiyama c : Lectotypification of Glaziocharis abei (Burmanniaceae)

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Yutaka Shikano. Visualizing a Quantum State

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

October 7, Shinichiro Mori, Associate Professor

GRASS 入門 Introduction to GRASS GIS

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Development of Advanced Simulation Methods for Solid Earth Simulations

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Estimation of Gravel Size Distribution using Contact Time

日本海域研究, 第 43 号,75-86 ページ,2012 JAPAN SEA RESEARCH, vol.43, p.75-86, 2012

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

日本政府 ( 文部科学省 ) 奨学金留学生申請書

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006).

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

Carotenoid Composition in the Yellow and Pale Green Petals of Primula Species

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

高エネルギーニュートリノ : 理論的な理解 の現状

Method for making high-quality thin sections of native sulfur

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

生命科学科 3 年後期 分子細胞生物 I 相同アミノ酸配列の比較解析 藤博幸関西学院大学理工学部生命医化学科

ATLAS 実験における荷電ヒッグス粒子の探索

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

SOLID STATE PHYSICAL CHEMISTRY

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

Analysis of shale gas production performance by SGPE

Search and Digitalization of Maps at the National Diet Library

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

Ancient West Asian Civilization as a foundation of all modern civilization New Geological and Archaeological Academic Research in Japan

NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して. Educational Research based on Newspaper In Education (NIE)

Hypocenter Distribution of Deep Low-frequency Tremors in Nankai Subduction Zone, Japan

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

2018 年度推薦入学選考 (11 月 15 日実施 ) 英語分野問題 ( 1 ページ 8 ページ )

Reaction mechanism of fusion-fission process in superheavy mass region

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 )

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Video Archive Contents Browsing Method based on News Structure Patterns

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

New Combinations in North American Desmodium (Leguminosae: Tribe Desmodieae)

二国間交流事業共同研究報告書 共同研究代表者所属 部局独立行政法人理化学研究所 創発物性科学研究センター

単層カーボンナノチューブ Single-Walled Carbon Nanotubes 1. 幾何学と電子構造 Geometry and Electronic Structure. Contents

Product Specification

岩手県早池峰 宮守オフィオライトかんらん岩の構造岩石学的特徴. Structural and petrological characteristics of ultramafic rocks in Hayachine-Miyamori Ophiolite

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Transcription:

J. Jpn. Bot. 86: 294 302 (2011) Morphology and Anatomy of Winter Bud of Pteridophyllum racemosum (Pteridophyllaceae) Yasuhiko Endo a, *, Jun Saito a and Keiichi Oono b a College of Science, Ibaraki University, Mito, 310-8512 Japan b Natural Science Museum and Institute, Chiba, 955-2, Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan *Corresponding author: endoy@mx.ibaraki.ac.jp (Accepted on May 10, 2011) Pteridophyllum racemosum (Pteridophyllaceae), an evergreen herb endemic to Japan, produces winter buds on the ground surface. Buds consist of three to four bud scales, young leaves, axillary buds, and a young inflorescence. Young leaves and the young inflorescence curve downward in the bud. Young leaves show circinate vernation. Bud scale tissues are composed of an epidermis, cortex, and a vascular bundle. The cortex is characterized by relatively wide intercellular spaces and deposition of starch grains in the cells. Key words: Circinate vernation, intercellular space, phyllotaxis, prophyll, Pteridophyllum racemosum, winter bud. Pteridophyllum racemosum Siebold & Zucc. (Pteridophyllaceae) is an evergreen herb endemic to Japan where it is distributed in the mountainous and subalpine areas of the central and northern parts of Honshu (Mizuno et al. 1975, Oono 1999, Akiyama 2006). Leaves are pectinate, radical, and form a rosette; the inflorescence is a raceme and stands at the center of the rosette; flowers have 2 sepals, 4 petals, 4 stamens, and 1 pistil and open from June to August (Ohwi 1965, 1982, Akiyama 2006). After flowering, winter buds grow approximately at the center of the rosette, on the ground surface (Kimura 1970a, 1970b, Mizuno et al. 1975). To understand the resistance mechanism by which aboveground winter buds resist environmental stresses, especially freezing, we studied the morphological features and internal structures of winter buds. This is be the first report on the morphology and anatomy of P. racemosum winter buds. We could also get some information about vernation and phyllotaxis of the species by the present analysis of the winter bud internal structures. Materials and Methods Winter buds were fixed in FAA (50% aqueous ethanol : formaldehyde : acetic acid = 9 : 0.5 : 0.5). The outer morphological features were observed using a dissecting microscope and were sketched or photographed. Internal structures were examined by cutting the buds transversely into 4 to 7 µm thick sections using a manual rotary microtome. Sections were stained using a combination of Heidenhain s haematoxylin, safranin, and Fast Green FCF, before observation under a light microscope. 294

October 2011 Journal of Japanese Botany Vol. 86 No. 5 295 Fig. 1. Outer morphology of winter bud of Pteridophyllum racemosum, collected at Mt. Kinunuma-yama, Tochigi Pref. on 22 Oct. 2009. a. Entire bud. b e. Bud scales. The position of each bud scale is shown in Fig. 1a. e. An innermost bud scale covered by other three bud scales (b d). b d. Abaxial side. e. Adaxial side. p. Petiole. Scale bar = 1mm. Results and Discussion Morphological features The outermost edge of buds was composed of three to four bud scales (Fig. 1). Some bud scales had a small leaf blade at their apex. Therefore, bud scales appeared to originate from a petiole. Bud scales were semi-circular, fringed by short hairs, and distinguishable from the petioles of foliage leaves (Fig. 1). Only the outermost one or two bud scales subtended an axillary bud (Fig. 2). Inside the scales, there were four to seven young leaves and a young inflorescence (Figs. 2, 6, 7). When the helically arranged bud scales (s0 s3 in Fig. 2) appeared in a counterclockwise order, the basal young leaves (y4 y6) in the bud appeared in the same order. On the other hand, sometimes the apical young leaves (y 7 y 10) appeared in a clockwise order. Such change of leaf arrangement has been reported to appear between the main axis and the lateral branch (Tucker 1963, Kumazawa 1960, 1963a, 1963b, 1967, 1979, Kumazawa and Kumazawa 1970, Gómez-Campo 1970, Iwamoto et al. 2005). Therefore, we presume that the apical leaves (y 7 y 10) would be originated from the axillary bud (of which the subtending leaf would be y6) (Fig. 2). This means that the inflorescence originated from an apical bud, and that the branching of the stem in the bud would be sympodial. There were two or three axillary buds in a

296 植物研究雑誌第 86 巻第 5 号 2011 年 10 月 Fig. 2. Transverse section of the basal part of winter bud, including reproductive shoot, of Pteridophyllum racemosum, collected at Misato-machi, Daisen-shi, Akita Pref. on 18 Oct. 2010 (Endo 3652, TUS), showing an arrangement of bud scales, young leaves, inflorescence, and axillary buds. a. Entire section. b. A schematic diagram of entire section. c. A schematic diagram of axillary bud ab1. d. A schematic diagram of axillary bud ab2. aa. Apex of axillary bud. aab. Axis of axillary bud. ab. Axillary bud. al. Apical part of leaf. i. Inflorescence. ll. Leaf lobe. lv. Lateral vein. m. Main axis of winter bud. mv. Midvein. s, s, s. Bud scale. vb. Vascular bundle. y, y, y. Young leaf. Closed triangle indicates position of the midvein of bud scale or young leaf. The numbers alongside the abbreviations indicate their relative position in the winter bud, i.e., higher numbers indicate positions toward the center of the bud for the same organ type. Scale bar = 1 mm.

October 2011 Journal of Japanese Botany Vol. 86 No. 5 297 Fig. 3. Schematic diagrams of axillary buds of a winter bud of Pteridophyllum racemosum in Fig. 2, indicating the direction of the phyllotactic helix. a. Axillary bud ab1 in Fig. 2. b. Axirally bud ab2 in Fig. 2. c. Axillary bud ab3 in Fig. 2. aa. Apex of axillary bud. aab. Axis of axillary bud. i. Inflorescence. m. Main axis of winter bud. s, s. Bud scale. y, y. Young leaf. Closed triangle indicates position of the midvein of bud scale or young leaf. The numbers alongside the abbreviations indicate their relative position in the winter bud, i.e., higher numbers indicate positions toward the center of the bud for the same organ type. The arrows indicate the direction of phyllotactic helix, i.e., long arrow for foliar organs of main axis and short one for those of axillary bud. winter bud of P. racemosum (ab1, ab2, and ab3 in Figs. 2a d). These axillary buds consisted of young leaves and/or bud scales (Figs. 2a d). The two most basal foliar organs of the axillary buds have been called prophylls (Blaser 1944, Kumazawa 1979). Therefore, the pairs of young leaves, s 1 and s 2 of the axillary bud ab1, s 1 and s 2 of bud ab2, and y 7 and y 8 of bud ab3, would be prophylls (Fig. 2). The divergent angle between the two prophylls, y 7 and y 8, was ca. 135 (Figs. 2a, b). In the two prophylls, the more basal one (y 7 in Figs. 2a, b) and the subtending leaf of the axillary bud (y6 in Figs. 2a, b) show a divergent angle ca. 135 between them (Figs. 2a, b). On the other hand, dicotyledonous plants have been reported to show the divergent angle ca. 180 between the prophylls as typical (Kumazawa 1979). These prophylls usually position in a direction perpendicular to the subtending leaf of the axillary shoot (Kumazawa 1979). In monocotyledonous plants, the prophyll is usually only one and positioned at the opposite side of the subtending leaf (Kumazawa 1979). However, the arrangement of prophylls in P. racemosum may be specialized among seed plants. To understand the systematic implications of the specialized arrangement of the prophylls, comparative morphology on the related species of P. racemosum would be needed. In a winter bud of P. racemosum, foliar organs of some axillary buds appeared in a clockwise order (Figs. 3a, c), but those of the other axillary buds appeared in a counterclockwise order (Fig. 3b). This difference of the direction of the phyllotactic helix would be shown as the difference of the relative position between the most basal prophyll and the subtending leaf of the axillary bud, i.e., when the most basal prophyll appeared in clockwise order (s 1 in Fig. 3a, and y 7 in Fig. 3c) against the subtending leaf of the axillary bud (s0 in Fig.

298 植物研究雑誌第 86 巻第 5 号 2011 年 10 月 Fig. 4. Transverse section of a part of Pteridophyllum racemosum winter bud scale near the vascular bundle, collected at Mt. Taihei-zan, Akita Pref. on 11 Aug. 2007 (Endo 3569, TUS), showing intracellular starch grains and relatively wide intercellular spaces. is. Intercellular space. sg. Starch grain. vb. Vascular bundle. Scale bar = 0.1 mm. Fig. 5. Transverse section of petiole of Pteridophyllum racemosum, collected at Mt. Ontake-san, Gifu Pref. on 29 Oct. 2009 (Endo 3640, TUS), showing three vascular bundles and relatively wide inter cellular spaces. a. A whole part. b. Enlargement of the cortex and vascular bundle of the petiole. cv. Cavity. is. Intercellular space. lv. Lateral vein. mv. Midvein. Scale bar = 0.1 mm.

October 2011 Journal of Japanese Botany Vol. 86 No. 5 299 Fig. 6. Transverse section of the apical part of a winter bud of Pteridophyllum racemosum, collected at Mt. Ontakesan, Gifu Pref. on 29 Oct. 2009 (Endo 3640, TUS), showing the positions of young leaves and inflorescence, and the internal structure of flower buds. f. Flower bud. p. Pollen mother cell. pe. Petal. pi. Pistil. s. Bud scale. se. Sepal. t. Theca. y. Young leaf. Scale bar = 0.1 mm. 3a, and y6 in Fig. 3c), other foliar organs of the bud appeared in the same order successively (s 2 in Fig. 3a, and y 8, y 9, and y 10 in Fig. 3c); when the most basal prophyll appeared in counterclockwise order (s 2 in Fig. 3b) against the subtending leaf of the axillary bud (s1 in Fig. 3b), other foliar organs of the bud appeared in counterclockwise order successively (s 3, y 4, and y 5 in Fig. 3b). Such variation of the position of the most basal prophyll relative to the subtending leaf among the axillary shoots in one individual has been reported in many dicotyledonous species (Kumazawa 1960, 1963a, 1963b, 1967, 1979, Kumazawa and Kumazawa 1970). Therefore, a variation of the direction of the phyllotactic helix of axillary buds, observed in a winter bud of P. racemosum, would not be unusual in Dicotyledons. How the position of the most basal prophyll relative to the subtending leaf is determined is still in question. The flower buds showed two sepals, four petals, a pistil and four stamens with thecae (Fig. 6). The phyllotaxis was determined to be spiral from the bud structure (Figs. 2a, 2b). The divergence may be 3/8 (Figs. 2a, b). The young

300 植物研究雑誌第 86 巻第 5 号 2011 年 10 月 Fig. 7. Outer morphology of winter bud of Pteridophyllum racemosum showing curving young leaves and a curving inflorescence. a. Bud scales were cut off to show a young inflorescence covered by curving young leaves. b. Bud scales and two outer young leaves were cut off to show a curving young leaf. c. Bud scales, young leaves, and several basal flower buds were cut off to show a curving young inflorescence. d. Bud scales were cut off to show a young leaf with circinate vernation. a c, collected at Mt. Ontake-san, Gifu Prefecture in Oct. 29, 2009 (Endo 3640, TUS). d, collected at Mt. Taihei-zan, Akita Prefecture in Aug. 11, 2007 (Endo 3569, TUS). f. Flower bud. i. Inflorescence. y. Young leaf. Scale bar = 1 mm. leaves and an inflorescence curved from the tips downward in the winter buds (Figs. 7a c). The young leaves showed circinate vernation (Fig. 7d). Such vernation has been reported in Droceraceae in angiosperms (Kenneth et al. 2002), and may be rare in angiosperms. To know whether circinate vernation is an apomorphy or a plesiomorphy for Pteridophyllaceae, we need to know distribution of the vernation type among the families related to Pteridophyllaceae. Anatomical features Scale tissues of Pteridophyllum racemosum were composed of an epidermis, a cortex, and a vascular bundle (Figs. 2a, 3). The scale cortex was composed of parenchymatous cells, with intercellular spaces (Fig. 4). The cortex of the petiole also had

October 2011 Journal of Japanese Botany Vol. 86 No. 5 301 intercellular spaces (Fig. 5). The intercellular spaces might help intercellular freezing of water and prevent intracellular freezing, which destroys intracellular structures (Sakai and Larcher 1987). Therefore, the presence of intercellular spaces in winter buds may be a mechanism for resisting lower temperatures during the winter. In further examination, the mechanism has to be confirmed experimentally in P. racemosum. Each scale had only one vascular bundle (Fig. 2a), but the leaf petiole had three vascular bundles, i.e., one mid-vein and two lateral veins (Figs. 2a, 5a). Therefore, scales could be distinguished from leaf petioles based on their internal structures. We suggest that the winter bud of P. racemosum would be classified as a type C winter bud, i.e., having perfectly differentiated scales, as described by Yoshie and Yoshida (1989). The cortex of bud scales contained starch grains (Fig. 4). Furthermore, the leaves of P. racemosum also contain starch grains in winter and are considered to act as storage organs (Kimura 1970a). Thus, bud scales would share a storage function with the winter leaves. The authors thank Dr. Hiroko Murata (Setsunan University, Japan) for providing information on the locality of Pteridophyllum racemosum. The authors also thank two reviewers for their comments. This study was supported by Grants-in-Aid for Scientific Research (C) (21570087) to Y. E. from the Japan Society for the Promotion of Science. References Akiyama S. 2006. Papaveraceae. In: Iwatsuki K., Boufford D. E., and Ohba H. (eds.), Flora of Japan. IIa: 444 452. Kodansha Ltd., Tokyo. Blaser H. W. 1994. Studies in the morphology of the Cyperaceae, II. The prophyll. Am. J. Bot. 31: 53-64. Gómez-Campo C. 1970. The direction of the phyllotactic helix in axillary shoots of six plant species. Bot. Gaz. 131: 110 115. Iwamoto A., Matsumura Y., Ohba H., Murata J. and Imaichi R. 2005. Development and structure of trichotomous branching in Edgeworthia chrysantha (Thymelaeaceae). Am. J. Bot. 92: 1350 1358. Kenneth M. C., Kenneth J. W. and Jobson R. W. 2002. Molecular evidence for the common origin of snaptraps among carnivorous plants. Am. J. Bot. 89: 1503 1509. Kimura M. 1970a. Analysis of production processes of an undergrowth of subalpine Abies forest, Pteridophyllum racemosum population 1 growth, carbohydrate economy and net production. Bot. Mag. (Tokyo) 83: 99 108. Kimura M. 1970b. Analysis of production processes of an undergrowth of subalpine Abies forest, Pteridophyllum racemosum population 2 respiration, gross production and economy of dry matter. Bot. Mag. (Tokyo) 83: 304 311. Kumazawa M. 1960. Analytical studies on the anodic and cathodic positions of prophylls in some dicotyledonous plants I. Indtroductory remarks. Bot. Mag. (Tokyo) 73: 487 493 (in Japanese with English summary). Kumazawa M. 1963a. Analytical studies on the anodic and cathodic positions of prophylls in some dicotyledonous plants II. Xamtium canadense. Bot. Mag. (Tokyo) 76: 225 233 (in Japanese with English summary). Kumazawa M. 1963b. Analytical studies on the anodic and cathodic positions of prophylls in some dicotyledonous plants III. Erigeron sumatrensis. Bot. Mag. (Tokyo) 76: 299 308 (in Japanese with English summary). Kumazawa M. 1967. Analytical studies on the anodic and cathodic positions of prophylls in some dicotyledonous plants IV. Impatiens balsamina and Kochia scoparia. Bot. Mag. (Tokyo) 80: 404 412 (in Japanese with English summary). Kumazawa M. 1979. Plant Organography. 408 pp. Shokabo, Tokyo (in Japanese). Kumazawa M. and Kumazawa M.1970. Analytical studies on the anodic and cathodic positions of prophylls in some dicotyledonous plants V. Periodic variation of the prophyll position. Bot. Mag. (Tokyo) 83: 242 248 (in Japanese with English summary). Mizuno M., Tanaka T., Kouya T., Hukuhara H., Suzuki T. and Oouti Y. 1975. About the vegetation for the habitat of Pteridophyllum racemosum Sieb. et Zucc. in Mt. Ontake. Ann. Proc. Gifu Pharm. Univ. 24: 21 38 (in Japanese with English summary). Ohwi J. 1965. Flora of Japan, 1067 pp. Smithsonian Institution, Washington, D. C. Ohwi J. 1982. Papaveraceae. In: Satake Y., Ohwi J., Kitamura S., Watari S. and Tominari T. (eds.), Wild Flowers of Japan. II: 122 126. Heibonsha Ltd., Tokyo (in Japanese). Oono K. 1999. Regional differences in the growth environment of Pteridophyllum racemosum Sieb. et Zucc. and its relation to vegetation history. Vegetation Science 16: 115 129 (in Japanese with English abstract).

302 植物研究雑誌第 86 巻第 5 号 2011 年 10 月 Sakai A. and Larcher W. 1987. Frost Survival of Plants, Ecological Studies 62. 321 pp. Springer Verlag, Heiderberg. Tucker S. C. 1963. Development and phyllotaxis of the vegetative axillary buds of Michelia fuscata. Am. J. Bot. 50: 661 668. Yoshie F. and Yoshida S. 1989. Wintering forms of perennial herbs in the cool temperate regions of Japan. Can. J. Bot. 67: 3563 3569. a 遠藤泰彦, 斉藤の形態と構造 a 潤, b 大野啓一 : オサバグサの冬芽 日本固有で, 山地帯から亜高山帯に生育する常緑草本オサバグサ Pteridophyllum racemosum( オサバグサ科 ) は地表面に冬芽を形成する. 冬芽の最も外側には, 葉柄から分化したと考えられる 3 枚から 4 枚の芽鱗がある. 芽鱗は表皮, 皮層, そして 1 本の維管束より成り,3 本の維管束が認められる葉柄とは明確に異なっている. 芽鱗の内側に, 渦巻き状をした幼葉と湾曲した花序が配置されている. このような渦巻き状の幼葉重畳法は被子植物では稀である. 芽鱗の皮層は比較的広い細胞間隙と細胞内のデンプン粒によって特徴づけられる. ここで見られる広い細胞間隙は, 冬期の低温による細胞内凍結を避ける構造と考えられる. 花序は頂芽由来であり, 茎は仮軸分枝している. 葉序は螺旋葉序で, 開度は 3/8 である. 一般に単子葉類を除く種子植物では, 側枝最基部に 前葉と呼ばれる 2 枚の葉をつけることが知られている. この 2 枚の葉は, 蓋葉の左右の方向に着くことから, 側生前葉と呼ばれ, 対生する ( 開度 1/2). 一方, 本研究での冬芽の観察結果, オサバグサの側枝では側生前葉に相当する 2 枚の葉の開度は 3/8 であり, この点で特徴的である. 本研究で認められた被子植物でも稀なオサバグサの特徴, つまり (1) 渦巻き状の幼葉重畳法,(2) 開度 3/8 の前葉, の分類学的意義については, オサバグサに近縁な分類群の相当する特徴と比較検討することにより明らかにする必要がある. ( a 茨城大学理学部, b 千葉県立中央博物館 )