LE230: Numerical Technique In Electrical Engineering

Similar documents
COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

MAT641- Numerical Analysis (Master course) D. Samy MZIOU

Chapter 9 Infinite Series

Chapter 3 Fourier Series Representation of Periodic Signals

National Quali cations

terms of discrete sequences can only take values that are discrete as opposed to

ASSERTION AND REASON

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

National Quali cations

ENGI 3424 Appendix Formulæ Page A-01

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

page 11 equation (1.2-10c), break the bar over the right side in the middle

Linear Algebra Existence of the determinant. Expansion according to a row.

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Chapter Taylor Theorem Revisited

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1.

Lectures 2 & 3 - Population ecology mathematics refresher

1985 AP Calculus BC: Section I

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

PREPARATORY MATHEMATICS FOR ENGINEERS

How much air is required by the people in this lecture theatre during this lecture?

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

TOPIC 5: INTEGRATION

Integration by Guessing

IX. Ordinary Differential Equations

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R.

PURE MATHEMATICS A-LEVEL PAPER 1

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

CONTINUITY AND DIFFERENTIABILITY

IIT JEE MATHS MATRICES AND DETERMINANTS

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Chapter 8 Approximation Methods, Hueckel Theory

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Limits Indeterminate Forms and L Hospital s Rule

The Propagation Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Instructions for Section 1

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

The Propagation Series

Discrete Fourier Transform (DFT)

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

An Introduction to Asymptotic Expansions

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

Solution to 1223 The Evil Warden.

MM1. Introduction to State-Space Method

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Probability & Statistics,

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

Errata for Second Edition, First Printing

Multi-Section Coupled Line Couplers

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

+ x. x 2x. 12. dx. 24. dx + 1)

Fourier Series and Applications

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

Orthogonal functions - Function Approximation

Multiplicative Versions of Infinitesimal Calculus

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Math 1272 Solutions for Fall 2004 Final Exam

Simpson s 1/3 rd Rule of Integration

Interpolation. 1. What is interpolation?

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

ln x = n e = 20 (nearest integer)

Northwest High School s Algebra 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Numerical Integration

Lectures 5-8: Fourier Series

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Section 3: Antiderivatives of Formulas

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

H2 Mathematics Arithmetic & Geometric Series ( )

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

NET/JRF, GATE, IIT JAM, JEST, TIFR

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

Errata for Second Edition, First Printing

Important Facts You Need To Know/Review:

Chapter 3 Higher Order Linear ODEs

Taylor and Maclaurin Series

Chapter 25 Sturm-Liouville problem (II)

Frequency Measurement in Noise

Section 5.1/5.2: Areas and Distances the Definite Integral

( ) = A n + B ( ) + Bn

1 Tangent Line Problem

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

Pre-Calculus - Chapter 3 Sections Notes

The Matrix Exponential

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Technical Support Document Bias of the Minimum Statistic

Transcription:

LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm

My dvic I you do t lt tchr ow t wht lvl you r by sig qustio, or rvlig your igorc you will ot lr or grow. You c t prtd or log, or you will vtully b oud out. Admissio o igorc is ot th irst stp i our ductio. Stv Covy Sv Hbits o Highly Ectiv Popl

Cours Objctivs Udrstd umricl tchiqus, i.., mig d sigiicc. Study umricl mthods, i.., Algorithms tht r usd to obti umricl solutios o mthmticl problm. Apply umricl mthods or solvig girig problms. 3

Epcttios I this cours, hopully you ll lr Fudmtls o umricl mthods Bsic umricl mthods,.g., solvig systm o qutios, umricl itgrtio, tc. Implmttio o umricl mthods Bsic Progrmmig Applictio o umricl mthods 4

How do w solv girig problm? Problm Dscriptio Mthmticl Modl Solutio o Mthmticl Modl Usig th Solutio 5

Why us Numricl Mthods? To solv problms tht cot b solvd lyticlly i.., ctly or lyticl solutio is diicult to obti or ot prcticl. π u du

Why us Numricl Mthods? To solv problms tht r itrctbl!

Wht do w d? Bsic Nds i th Numricl Mthods: Prcticl: C b computd i rsobl mout o tim. Accurt: Good pproimt to th tru vlu, Iormtio bout th pproimtio rror Bouds, rror ordr,. 8

Outlis o th Cours Tylor Thorm Numbr Rprsttio Solutio o olir Equtios Solutio o lir Equtios Rgrssio d Itrpoltio Numricl Dirtitio Numricl Itgrtio Solutio o ordiry dirtil qutios ODE Solutio o Prtil dirtil qutios PDE Eigvlu Problm Grph Thory d Applictios 9

Solutio o Nolir Equtios Som simpl qutios c b solvd lyticlly: 4 3 0 Alytic solutio d roots 3 4 ± 4 4 3 My othr qutios hv o lyticl solutio: 9 5 0 No lytic solutio 0

Solutio o Systms o Lir Equtios 000 qutios i 000 uows. w hv Wht to do i 3, 5 3, 3 W c solv it s : 5 3

Crmr s Rul is Not Prcticl Crmr's Rul c b usd to solv th systm: 3 5, 3 5 But Crmr's Rul is ot prcticl or lrg problms. To solv N qutios with N uows, w d N NN! multiplictios. To solv 30 by 30 systm,.3 0 A supr computr ds mor th 0 35 multiplictios r dd. 0 yrs to comput this.

Curv Fittig : Rgrssio Giv st o dt: 0 y 0.5 0.3.3 Slct curv tht bst its th dt. O choic is to id th curv so tht th sum o th squr o th rror is miimizd. 3

Curv Fittig : Itrpoltio Giv st o dt: i 0 y i 0.5 0.3 5.3 Fid polyomil P whos grph psss through ll tbultd poits. y i P i i i is i th tbl 4

Itgrtio Som uctios c b itgrtd lyticlly: 3 But my uctios hv o lyticlsolutios : 0 d d? 3 9 4 5

Solutio o Ordiry Dirtil Equtios A solutio to th dirtil qutio : && t 3& t 3 t 0 & 0 ; 0 0 is uctio t tht stisis th qutios. * Alyticlsolutios r vilblor spcil css oly. 6

Solutio o Prtil Dirtil Equtios Prtil Dirtil Equtios r mor diicult to solv th ordiry dirtil qutios: u t u 0 u0, t u, t 0, u,0 si π 7

Rprstig Rl Numbrs You r milir with th dciml systm: 3.45 3 0 0 0 0 4 0 5 0 Dciml Systm: Bs 0, Digits 0,,,9 Stdrd Rprsttios: ± 3. 4 5 sig itgr rctio prt prt 8

Normlizd Flotig Poit Rprsttio Normlizd Flotig Poit Rprsttio: ± sig d 0, d. 3 4 0 ± mtiss pot rctio ± : sigd pot Scitiic Nottio: Ectly o o-zro digit pprs bor dciml poit. Advtg: Eicit i rprstig vry smll or vry lrg umbrs. 9

Biry Systm Biry Systm: Bs, Digits {0,} ± sig. 3 4 mtiss ± sigd pot.0 0 3 0.65 0 0

Fct Numbrs tht hv iit psio i o umbrig systm my hv iiit psio i othr umbrig systm:. 0.000000 000... You c vr rprst. ctly i biry systm.

IEEE 754 Flotig-Poit Stdrd Sigl Prcisio 3-bit rprsttio -bit Sig 8-bit Epot 3-bit Frctio S Epot 8 Frctio 3 Doubl Prcisio 64-bit rprsttio -bit Sig -bit Epot 5-bit Frctio S Epot Frctio 5 cotiud

Sigiict Digits Sigiict digits r thos digits tht c b usd with coidc. Sigl-Prcisio: 7 Sigiict Digits.75494 0-38 to 3.4083 0 38 Doubl-Prcisio: 5 Sigiict Digits.50738 0-308 to.797693 0 308 3

Rmrs Numbrs tht c b ctly rprstd r clld mchi umbrs. Dirc btw mchi umbrs is ot uiorm Sum o mchi umbrs is ot cssrily mchi umbr 4

Clcultor Empl Suppos you wt to comput: 3.578 *.39 usig clcultor with two-digit rctios 3.57 *.3 7.60 Tru swr: 7.65334 5

Sigiict Digits -Empl 48.9 6

Accurcy d Prcisio Accurcyis rltd to th closss to th tru vlu. Prcisiois rltd to th closss to othr stimtd vlus. 7

8

Roudig d Choppig Roudig: Rplc th umbr by th rst mchi umbr Roud-o Error Choppig: Throw ll tr digits. Tructio Error 9

Roudig d Choppig 30

Error Diitios Tru Error C b computd i th tru vlu is ow: Absolut Tru Error E t tru vlu pproimtio Absolut Prct Rltiv Error ε t tru vlu pproimtio tru vlu *00 3

Error Diitios Estimtd Error Wh th tru vlu is ot ow: Estimtd Absolut Error E currt stimt prvious stimt Estimtd Absolut Prct Rltiv Error ε currt stimt prvious stimt currt stimt *00 3

Nottio W sy tht th stimt is corrct to dciml digits i: Error 0 W sy tht th stimt is corrct to dciml digits roudd i: Error 0 33

Loss o Sigiict Digits Subtrctio o two rltivly clos umbrs c ld to loss o sigiict digits or sigiicc Empl: Suppos 7 sigiict digits 0.34567, y 0.34566 y 0.000000 -> sigiict digit 34

b Loss o Sigiict Digits Empl Cosidr th ollowig qudrtic qutio: b± b b c 0;, I Empl:, b., c. d ssum 7 sigiict digits: b 4c C us b >> 4c, b b 4c 34565>> 4c.08, 4.8484, b 4c 0.000000 4c 34560 0.00009 c / b b 4c 0.00009

36 Tylor Sris 0 0 3 3 '! : writ c w covrg, sris th I!... 3!! : bout o psio Tylor sris Th Sris Tylor or

Mcluri Sris Mcluri sris is spcil cs o Tylor sris with th ctr o psio 0. Th I 0 th Mcluri sris ' 0 0! sris covrg, psio o 3 : 0 3... 3! w c writ : 0! 0 37

38 Mcluri Sris Empl. Th sris covrgs or... 3!!! 0! 0 0 0 ' ' 0 3 0 0 < or o psio sris Mcluri Obti

Tylor Sris 3 Empl.5 p 0.5.5 0.5 0 - -0.8-0.6-0.4-0. 0 0. 0.4 0.6 0.8 39

Mcluri Sris Empl Obti Mcluri sris psio o si : ' 3 si si cos si cos 0 0! 0 '0 Th sris covrgs or 3 < 0 0 0 3 3!. 0 5 5! 7 7!... 40

4 3-3 /3! 5 /5! 0 si - - 3 /3! - -3-4 -4-3 - - 0 3 4 4

Covrgc o Tylor Sris Th Tylor sris covrgs st w trms r dd wh is r th poit o psio. I - is lrg, th mor trms r dd to gt good pproimtio. 4

Tylor s Thorm I uctio posssss drivtivs o ordrs o itrvl cotiig d th th vlu o,,..., is giv by : whr : R 0!! ξ d R ξ is trms Tructd Tylor Sris btw Rmidr d. 43

Tylor s Thorm W c pply Tylor's thorm or : with th poit o psio 0 i <. I, th th uctio d its drivtivs r ot did. Tylor Thorm is ot pplicbl. 44

Error Trm To gt id bout th pproimtio w c driv uppr boud o : R! ξ or ll vlus o ξ btw d. rror, 45

Error Trm -Empl How lrg is th rror i w rplcd th irst 4 trms 3o its Tylor sris psio t 0 wh 0.? R R ξ! 0.! ξ 0. R 8.468E 05 3 0. or by 46

Altrtiv orm o Tylor s Thorm Lt o itrvl h hv drivtivs o 0 cotiig! h d R ordrs h,,..., th : h stp siz R ξ! h whr ξ is btw d h 47

48 Tylor s Thorm Altrtiv orms. d btw is!!,. d btw is!! 0 0 h whr h h h h whr ξ ξ ξ ξ

49 M Vlu Thorm ', 0, Us Tylor's Thorm or : Proo ', th thr ists, drivtiv is did o th op itrvl d its ], closd itrvl[ cotiuous uctio o is I b ξ b b h b b ξ b ξ b b

Altrtig Sris Thorm Cosidr th ltrtig sris : S I lim d 3 3 0 4 L 4 L th Th sris covrgs d S S S : : Prtil sum sum o First omittd trm th irst trms 50

Altrtig Sris Empl si c b computd usig : si 3! This is covrgt ltrtig sris sic : Th : 3 si si 3! 3! 4 L 5! 5! d 7! lim 0 5! 7! L 5

5 Empl 3 Tylor Sris...! 0.5...! 0.5 4 0.5 0.5! 0.5 0.5 4 0.5 4 '0.5 ' 0.5 0 0.5, o psio Tylor sris Obti

53 Empl 3 Error Trm! m! 0.5! 0.5 0.5! 3 [0.5,] Error Error Error Error ξ ξ ξ ξ