Lecture 31 INTEGRATION

Similar documents
Integration by Parts

Section: I. u 4 du. (9x + 1) + C, 3

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Methods of Integration

Math 21B - Homework Set 8

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

Chapter 7: Techniques of Integration

Techniques of Integration

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

Math 106: Review for Exam II - SOLUTIONS

Methods of Integration

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

Solutions to Tutorial Sheet 12 Topics: Integration by Substitution + Integration by the Method of Partial Fractions + Applications to Geometry

MATH1231 CALCULUS. Session II Dr John Roberts (based on notes of A./Prof. Bruce Henry) Red Center Room 3065

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Assignment 11 Assigned Mon Sept 27

Calculus II. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAC / 1

Math 181, Exam 1, Spring 2013 Problem 1 Solution. arctan xdx.

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration.

Calculus for Engineers II - Sample Problems on Integrals Manuela Kulaxizi

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

SOLUTIONS FOR PRACTICE FINAL EXAM

5.3 SOLVING TRIGONOMETRIC EQUATIONS

Math 106: Review for Exam II - SOLUTIONS

18.01 Single Variable Calculus Fall 2006

Math F15 Rahman

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Chapter 7 Notes, Stewart 7e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m xcos n (x)dx...

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Mar 10, Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Integration by parts Integration by parts is a direct reversal of the product rule. By integrating both sides, we get:

6.2 Trigonometric Integrals and Substitutions

Integration by Substitution

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Summary: Primer on Integral Calculus:

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

Final Exam Review Quesitons

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 112 Section 10 Lecture notes, 1/7/04

Math 205, Winter 2018, Assignment 3

Partial Fractions. Calculus 2 Lia Vas

Final Examination F.5 Mathematics M2 Suggested Answers

Section 8.3 Partial Fraction Decomposition

Math 226 Calculus Spring 2016 Exam 2V1

Announcements. Topics: Homework:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx

A Library of Functions

Chapter 3. Integration. 3.1 Indefinite Integration

MAT 271 Recitation. MAT 271 Recitation. Sections 7.1 and 7.2. Lindsey K. Gamard, ASU SoMSS. 30 August 2013

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

Integration Techniques

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Integration by parts (product rule backwards)

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12

Chapter 8 Integration Techniques and Improper Integrals

Final Examination Solutions

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

Math 222 Spring 2013 Exam 3 Review Problem Answers

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

MATH 162. Midterm Exam 1 - Solutions February 22, 2007

Course Notes for Calculus , Spring 2015

Lecture 5: Integrals and Applications

Lecture 4: Integrals and applications

APPENDIX : PARTIAL FRACTIONS

Calculus I Sample Exam #01

Chapter 6. Techniques of Integration. 6.1 Differential notation

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Reform Calculus: Part II. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Chapter 6. Techniques of Integration. 6.1 Differential notation

MATH MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS Calculus, Fall 2017 Professor: Jared Speck. Problem 1. Approximate the integral

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

Assignment 6 Solution. Please do not copy and paste my answer. You will get similar questions but with different numbers!

Announcements. Topics: Homework:

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math Final Exam Review

Math Calculus II Homework # Due Date Solutions

Integration 1/10. Integration. Student Guidance Centre Learning Development Service

Final Exam 2011 Winter Term 2 Solutions

MATH 151 Engineering Mathematics I

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Study 7.4 # 1 11, 15, 17, 21, 25. Class Notes: Prof. G. Battaly, Westchester Community College, NY. x x 2 +4x+3. How do we integrate?

Worksheet Week 7 Section

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

Chapter 6: Messy Integrals

More Final Practice Problems

Transcription:

Lecture 3 INTEGRATION Substitution. Example. x (let u = x 3 +5 x3 +5 du =3x = 3x 3 x 3 +5 = du 3 u du =3x ) = 3 u du = 3 u = 3 u = 3 x3 +5+C. Example. du (let u =3x +5 3x+5 = 3 3 3x+5 =3 du =3.) = 3 du u = 3 ln u = 3 ln(3x +5)+C. Example 3. x +x (let u =+x du = +x x udu = = u du = u 3 =x du =x) = u 3 3 = (+x ) +x 3.

Integration : Substitution (cont d). Example. Example. cos x (+sin x) = du u = u du = u = u = +sin x. Lecture 3 (let u = + sin x du = cos x du = cos x) x log e x (let u = log e x du = x du = x ) = log e x x = u du = log e u = log e (log e x)+c.

Lecture 33 Partial Fractions. Example. Express x (x )(x 3) = A x + B x 3 x (x )(x 3) in the form A x + B x 3. = A(x 3)+B(x ) (x )(x 3) x =A(x 3) + B(x ) Substitute x =3. B = 5. Substitute x = A =3 A = 3. Alternatively,(A + B)x (3A +B) = x A + B = & 3A +B = 3( B)+B = B =5 A = 5= 3. x (x )(x 3) = 3 x + 5 x 3. Note: The degree of numerators is less than the degree of the demominators for breaking up of partial fractions. Example. Decompose x+3 (x +)(x ) x+3 (x +)(x ) = Ax+B x + x = (Ax+B)(x )+C(x +) (x +)(x ) into partial fractions. (since the degree of the numerators are at most, one less than the degree of the denominators.) x +3=(Ax + B)(x ) (x +) 7=6C C = 7 6 When x =0, 3= B +C 3= B + 4 6 B = 3. When x =, 5= (A + B)+c(3) = (A 3 )+ 7 6 (3) A = 7 6 x+3 (x +)(x ) = 7 6 x 3 x + + 7 6 x = 7 6x 7x+ 6x +. Example 3. Decompose (x )(x+). (x )(x+) = A x + B x+ (x+) =A(x +) + B(x )(x +)+C(x ) When x =, 9A = A =9. When x =, 3C = C = 3. When x =0, =A B C, B = A C = + 3 B = 9. (x )(x+) = 9 x + 9 x+ + 3 (x+) = 9x 8 9x+9 3(x+).

Integration with partial fractions. Example. Find (x )(x ) = A x + (x )(x ). B x A =. Hence (x )(x ) = x + x. (x )(x ) = ( x + x ) Lecture 34 =A(x ) + B(x ). If x =,B =. Ifx =, A = = ln x +ln x =ln x x

Lecture 35 Example. Find 3x +5x+7 (x )(x ). First, (x )(x ) = x 3x +, which has the same degree as the numerator. So divide: 3 x 3x + ) 3x +5x +7 3x 9x +6 4x + Now use partial fractions: 4x+ (x )(x ) = A =5 A = 5 & B =9. A x + B x = A(x )+B(x ) (x )(x ) 4x +=A(x ) + B(x ) So, ( ) 3x +5x+7 (x )(x ) = 3+ 4+ (x )(x ) = ( 3 5 x + 9 x ) =3x 5 ln x +9ln x =3x +ln (x )9 (x ) 5

Lecture 36 Integration by Parts. d d (uv) =u v + v d u u dv = d du (uv) v. u dv = uv v du i.e., udv= uv vdu. Example. Find xe x. Let u = x du =,v = ex xe x = xe x e x = xe x e x = e x (x ) Example. Find x cos x. x cos x= x d sin x = x sin x sin x d x = x sin x sin x = x sin x + cos x

Lecture 37 Integration by Parts (cont d) Example. Find log e x. Let u =lnx, v = x log e x= log e x = x ln x = x ln x x Example. Find sin x. Let u = sin x, v = x. sin x= sin x = x sin x x let w = x x = dw x = x sin x ( w x dw ) x = x sin x + w dw = x sin x + w = x sin x +( x )

Lecture 38 Trigonometric Integrals. Powers of sin x Example. sin x= cos x Example. sin x= ( cos x) = (x sin x)+c Example 3. sin 3 x= sin x sin x = ( cos x) sin x(let u = cos x du = sin x) = ( u ) du = (u 3 u3 )+C = 3 cos3 x cos x Example 4. sin 4 x= (sin x) = ( ( cos x)) = 4 ( cos x + cos x) = 4 ( cos x + ( + cos 4x)) = 4 x sin x + (x + 4 sin 4x)) = 3 8 x 4 sin x + 3 sin 4x Example 5. sin 5 x= sin 4 x sin x = ( cos x) sin x(let u = cos x du = sin x) = ( u ) du = ( u + u 4 ) du = (u + 3 u3 + u5 5 )+C = 3 cos3 x cos5 x 5 cos x For sin n x, for odd powers, use the substitution method u = cos x. For even powers, use the fact that sin x = ( cos x)

tan n xfor n = Z + Lecture 39 Example. tan x= sin x cos x = ln cos x =ln cos x = ln sec x Example. tan x= (sec x ) = tan x x Example 3. tan 3 x= tan x(sec x ) = tan x sec x tan x = tan xd(tan x) tan x = tan x + ln cos x Example 4. tan 4 x= tan x(sec x ) = tan x sec x tan x = tan xd(tan x) tan x = 3 tan3 x (tan x x)+c = x + 3 tan3 x tan x Example 5. tan 5 x= tan 3 x(sec x ) = tan 3 x sec x tan 3 x = tan 3 xd(tan x) tan 3 x = 4 tan4 x ( tan x + ln cos x)+c = 4 tan4 x tan x ln cos x

Lecture 40 Trigonometric integrals Example. sin x cos x(u = cos x, du = sin x) = udu = u = cos x Alternatively, sin x cos x(v = sin x, dv = cos x) = vdv = v + K = sin x + K sin Note: x and cos x differ only by a constant, so although the answers look different, they are really the same, only expressed differently, because C and K are arbitrary constants. Example. sin / x cos x(u = sin x du = cos x) = u / du = u3/ 3 = 3 sin3/ x Example 3. cos 7 x sin 4 x = cos 6 x sin 4 x cos x(split the odd power) = ( sin x) 3 sin 4 cos x(u = sin x du = cos x) = ( u ) 3 u 4 du = ( 3u +3u 4 u 6 )u 4 du = (u 4 3u 6 +3u 8 u 0 )du = u5 5 3u7 7 + 3u9 9 u = 5 sin5 x 3 7 sin7 x + 3 sin9 x sin x

Example 4. cos 7 x (u = sin x u = cos x) sin 4 x = cos 6 x cos x sin 4 x = ( sin x) 3 cos x sin 4 x = ( u ) 3 du u 4 = 3u +3u 4 u 6 u du 4 = (u 4 3u +3 u )du = u 3 3 +3u +3u 3 u3 = 3 (sin x) 3 + 3(sin x) + 3 sin x 3 sin3 x

Lecture 4 Integration using tangents of half angles Let t = tan x. Then sin x = t dt = sec x dt = ( + tan x ) dt = ( + t ) dt = +t = dt +t Example. ( 3+ cos x = 3+ = +t, cos x = t +t, tan x = t t. ) dt +t ( ) t +t ( dt ) +t ( 3(+t )+( t )) +t = dt 3+3t + t = dt 5+t = 5 tan t 5 = 5 tan tan x 5 Example. cos x 3+ cos x = (3+ cos x) 3 3+ cos x = 3 3+ cos x = x 3 5 tan tan x 5 = x 3 5 tan tan x 5

Lecture 4 Integrals with quadratic denominators Example. Example. Example 3. Example 4. Example 5. 9+4x = 4( 9 4 +x ) = 4 9 4 +x = 4 ( 3 ) tan x 3 = 6 tan x 3 = 4x 9 x +4x+ = x 9 4 = ln (x + (x+) 3 = du u 3 = 3 = 3 3x +x+ = 3 = 3 = 3 = 3 = 3 x 9 4 u ln 3 x+ ln 3 u+ 3 x++ 3 x + 3 x+ 3 x + 3 x+ 9 + 3 9 (x+ 3 ) + 9 du u + 9 ( ) 3 tan ) (Let u = x + du = ) 3u Let u = x + 3 = tan 3(x + ) = 3x+ tan +4x x = (x 4x) = 5 (x 4x+4) = 5 (x ) = du 5u = 5 ln 5+u 5 u = 5 ln 5 +x 5+ x du = (Let u = x du = )

Example 6. x x +6x+ = (x+6) 6 x +6x+ = x+6 x +6x+ 6 x +6x+ = ln(x +6x +) 3 x +6x+ = ln(x +6x +) 3 x +6x+9 8 = ln(x +6x +) 3 (x+3) 8 = ln(x +6x +) 3 du u 8 ( = ln(x +6x +) 3 ln 8 = ln(x +6x +) 3 8 u 8 u+ 8 x+3 ln 8 Let u = x +3 du = ) x+3+ 8

Lecture 43 Substitutions using trigonometry. - for a x, a + x, and x a, use substitutions x = a sin θ, x = a tan θ and x = a sec θ respectively. Example. x 9 x (Let x = 3 sin θ = 3 cos θdθ) = 9 sin θ3 cos θ dθ 9 9 sin θ = 7 sin θ cos θ dθ 3 cos θ =9 sin θdθ = 9 ( cos θ) dθ = 9 [θ sin θ]+c where x = 3 sin θ, sin θ = x 3 θ = sin x 3 = 9 (θ sin θ cos θ)+c = 9 (θ sin θ cos θ)+c = 9 (sin x 3 x 9 x 3 3 )+C = 9 (sin x 3 x 9 9 x )+C

Lecture 44 Reduction Formulae Example. If I n = sin n x(n is an integer). Express I n in terms of I n and hence evaluate π/ 0 sin 5 x(application of Integration by Parts). Solution. I n = sin n x = sin n x sin x(let u = sin n x and v = sin x u =(n ) sin n x. cos x & v = cos x) = cos x sin n x + (n ) sin n cos x cos x = cos x sin n x +(n ) sin n cos x = cos x sin n x +(n ) sin n ( sin x) = cos x sin n x +(n ) sin n x (n ) sin n x = cos x sin n x +(n )I n (n )I n (n )I n + I n = cos x sin n x(n )I n I n (n +)= cos x sin n x +(n )I n I n = n cos x sinn x + n n I n I 5 = π/ 0 sin 5 x =[ 5 cos x sin4 x + 4 5 I 3] π/ 0 =[ 5 cos x sin4 x + 4 5 ( 3 cos x sin x + 3 I )] π/ =[ 5 cos x sin4 x + 4 5 ( 3 cos x sin x + 3 =[ 5 cos x sin4 x 4 5 cos x sin x + 8 5 0 sin x)] π/ sin x] π/ 0 =[ 5 cos x sin4 x 4 5 cos x sin x 8 5 cos x]π/ 0 = ( 8 5 cos 0) = 8 5 0 Example. If I n = (log e x) n show that I n = (log e ) n ni n hence evaluate (log e x) 4.

I n = (log e x) n (Let u = (log e x) n & v = = x(log e x) n n u = n x (log e x) n,v = x) x (log e x) n x =[x(log e x) n ] n (log e x) n = (ln ) n ni n I 4 = (log e x) n = (ln ) 4 4I 3 = (ln ) 4 4((ln ) 3 3I ) = (ln ) 4 8(ln ) 3 +I = (ln ) 4 8(ln ) 3 + ((ln ) I ) = (ln ) 4 8(ln ) 3 + 4(ln ) 4I...( ) = (ln ) 4 8(ln ) 3 + 4(ln ) 4 ln x(let u = log x, v = = (ln ) 4 8(ln ) 3 + 4(ln ) 4[[x ln x] ] = (ln ) 4 8(ln ) 3 + 4(ln ) 4[x ln x x] = (ln ) 4 8(ln ) 3 + 4(ln ) 4( ln +) = (ln ) 4 8(ln ) 3 + 4(ln ) 48 ln + 4 ( ) Also I = (ln ) I 0 = (ln ) = (ln ) [x] = ln. u = x,v = x) Example 3. Let I n = sec n x. Show that I n = tan x secn x n + n n I n d Note: sec x = d (cos x) = (cos) ( sin x) = sin x cos x = tan x sec x. I n = sec n x sec x[let u = sec n xv = sec x u =(n )(sec x) n 3 tan x sec x =(n )(sec x) n tan x, v = tan x] = tan x sec n x (n ) tan x(sec x) n = tan x sec n x (n ) (sec) n tan x = tan x sec n x (n ) tan x(sec x) n = tan x sec n x (n ) (sec x ) sec n x = tan x sec n x (n ) sec n x+(n ) sec n x So sec n x+(n ) sec n x=(n ) sec n x = tan x sec n x +(n ) sec n x= tan x sec n x +(n )I n So sec n x= tan x secn x n + n n I n

Example 4. Let I n = tan n x. Then: I n = tan n x tan x = tan n x(sec x ) = tan n x sec x tan n x = tan n x sec x I n [Let u = tan x du = sec x] = u n I n = un n I n = tann x n I n