Chapter 8. Ch.8, Potential flow

Similar documents
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

Superposition. Section 8.5.3

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y ("ˆ ( ) ( ) ( (( ) # ("ˆ ( ) ( ) ( ) # B ˆ z ( k )

1 Using Integration to Find Arc Lengths and Surface Areas

Applied Aerodynamics

Section 35 SHM and Circular Motion

Electric Potential. and Equipotentials

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Physics 11b Lecture #11

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept.

Energy Dissipation Gravitational Potential Energy Power

Mark Scheme (Results) January 2008

π(x, y) = u x + v y = V (x cos + y sin ) κ(x, y) = u y v x = V (y cos x sin ) v u x y

Collection of Formulas

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

Physics 1502: Lecture 2 Today s Agenda

Final Review of AerE 243 Class

U>, and is negative. Electric Potential Energy

Radial geodesics in Schwarzschild spacetime

Answers to test yourself questions

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Chapter 28 Sources of Magnetic Field

This immediately suggests an inverse-square law for a "piece" of current along the line.

MAGNETIC EFFECT OF CURRENT & MAGNETISM

Chapter 6 Thermoelasticity

Friedmannien equations

6. Gravitation. 6.1 Newton's law of Gravitation

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , ,

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

r a + r b a + ( r b + r c)

1. The sphere P travels in a straight line with speed

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

ELECTRO - MAGNETIC INDUCTION

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

1 Fundamental Solutions to the Wave Equation

PX3008 Problem Sheet 1

AQA Maths M2. Topic Questions from Papers. Circular Motion. Answers

Solutions to Midterm Physics 201

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

3.1 Magnetic Fields. Oersted and Ampere

Wave Generation by Oscillating Wall in Static Media

Prof. Anchordoqui Problems set # 12 Physics 169 May 12, 2015

SOLUTIONS TO CONCEPTS CHAPTER 11

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Optimization. x = 22 corresponds to local maximum by second derivative test

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

Chapter 4 Kinematics in Two Dimensions

Chapter 4 Two-Dimensional Motion

Chapter 2: Electric Field

ME 425: Aerodynamics

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

Dislocations and Cracks 1

CHAPTER 7 Applications of Integration

CHAPTER IV RADIATION BY SIMPLE ACOUSTIC SOURCE. or by vibratory forces acting directly on the fluid, or by the violent motion of the fluid itself.

STD: XI MATHEMATICS Total Marks: 90. I Choose the correct answer: ( 20 x 1 = 20 ) a) x = 1 b) x =2 c) x = 3 d) x = 0

Two dimensional polar coordinate system in airy stress functions

FI 2201 Electromagnetism

π,π is the angle FROM a! TO b

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

NARAYANA I I T / P M T A C A D E M Y. C o m m o n Pr a c t i c e T e s t 0 9 XI-IC SPARK Date: PHYSICS CHEMISTRY MATHEMATICS

Physics 604 Problem Set 1 Due Sept 16, 2010

Fluids & Bernoulli s Equation. Group Problems 9

Electrostatics (Electric Charges and Field) #2 2010

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

The Formulas of Vector Calculus John Cullinan

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

CHAPTER 2 ELECTROSTATIC POTENTIAL

B.A. (PROGRAMME) 1 YEAR MATHEMATICS

Chapter 8. Pressurized Cylinders and Spinning Disks

On the Eötvös effect

THE NAVIER-STOKES EQUATION: The Queen of Fluid Dynamics. A proof simple, but complete.

2.25 Advanced Fluid Mechanics

Bernoulli equation. Frictionless incompressible flow: Equation of motion for a mass element moving along a streamline. m dt

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

9.4 The response of equilibrium to temperature (continued)

Lecture 11: Potential Gradient and Capacitor Review:

Electricity & Magnetism Lecture 6: Electric Potential

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57

Chapter I Vector Analysis

Chapter 21: Electric Charge and Electric Field

Chapter 1. Model Theory

Dynamically Equivalent Systems. Dynamically Equivalent Systems. Dynamically Equivalent Systems. ME 201 Mechanics of Machines

Winter 2004 OSU Sources of Magnetic Fields 1 Chapter 32

Theory of Elasticity. Chapter 9 Two-Dimensional Solution

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

+ r Position Velocity

MAGNETIC FIELD INTRODUCTION

Fundamental Theorem of Calculus

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

7.5-Determinants in Two Variables

Lecture 10. Solution of Nonlinear Equations - II

ρ θ φ δ δ θ δ φ δ φ π δ φ π δ φ π

ELECTROSTATICS. JEE-Physics ELECTRIC CHARGE

Thomas Whitham Sixth Form

Transcription:

Ch.8, Voticit (epetition) Velocit potentil Stem function Supeposition Cicultion -dimensionl bodies Kutt-Joukovskis lift theoem Comple potentil Aismmetic potentil flow

Rotting fluid element Chpte 4 Angul velocit: dt d dt d z 1 Fo smll ngles: dt u d ddt v d 1 dt v d ddt u d 1 d d t d v d t d u d t d u t d v d d

Rotting fluid element Chpte 4 Let u dt d v dt d dt 0 d d t d v d t d u d t d u t d v d d u v z 1 Angul velocit z v w 1 w z u 1 Note tht in the cse 0 V V ot 1 1 Voticit: The flow is clled iotionl if 0

Inviscid flow: V Dt D g p V 0 DV Dt g p Eule s eqution Integting long stem line leds to the Benoulli eqution w w u Iottionl flow V,, 0 v z u z v

Inviscid nd iottionl flow If the flow is iottionl the velocitpotentilen V V 0,, z, t u v, w,, cn be defined V u, v w z z Continuit: z 0 Momentum: t p V gz constnt

Stem function: The velocit components cn now be witten s 0 u u v Compe to 0 v Inviscid nd iottionl flow, Potentil flow: Fo D-flow: u v Stem-lines nd potentil-lines e pependicul

: Relit :

: Element flows which cn be combined to cete othe flows: 1. Unifom stem: U U sin U U cos u U v 0 U

:. Line souce/sink: m mln Stength m Q b Q b Volume flow Width noml to the plne v v 1 m 1 0

3. Line vote: K K ln Vote stength K v v 1 0 1

Supepostion: Gficl method Empel: line sink + line vote t the oigin. Connect points whee s v constnt

Supeposition of element flows, empel: Unifom stem + souce = Rnkine hlfbod U sin m U cos mln

Souce in (,)=(-,0) Sink in (,)=(,0) s k mctn mctn m k m s k s m k s tn k tns k k s s m k m s

ctn m m s k s k ctn ctn 1 ctn tn tn 1 tn tn ctn tn tn 1 tn tn tn s k s k s k

Souce + sink t oigin: Doublet d lim 0 mctn m m d sin cos

Kpitel 8 Unifom stem + souce in (,)=(-,0) + sink in (,)=(,0) = Rnkine ovl p k s U sin m The ovl is fomed b the stem line 0 k s U mctn k s k s m k m s L

Rnkine ovl: 4 4 4 m U u X-velocit Stgntion points in (,)=(L,0) 0 4 4 L m U L L L m U U m L U m L 1 U m h h cot 1 1 m h U m U u

Clinde: Let 0 h 1 u L m U i.e. cicul clinde = Unifom stem +doublet d U U sin U sin U cos cos

Kelvin-ovl: Unifom stem + vote pi in = U 1 K ln

Cicul clinde with cicultion Unifom stem + doublet+line vote But let s fist intoduce the cicultion

C Cicultion V cos ds V ds ud vd C C C wdz ds V Iottionl flow: V V ds ds d d dz z d ds V C d 1 1 0 NB! 0 if C is closed cuve is not vlid if C suounds vote cente

C Fo line vote: v v 0 K C V ds 0 K d K ds V Cicul clinde with cicultion Unifom flow + doublet+line vote

Cicul clinde with cicultion sin Unifom flow + doublet+line vote U sin Let the clinde be fomed b the stem line 0 K ln C 1 Cn be chieved b U C1 K ln whee is the clinde dius U sin K ln

Cicul clinde with cicultion Chpte 8 v v 1 U U cos 1 sin 1 K The Mgnus effect

Kutt-Joukovskis lift theoem Velocit t the clinde sufce: Benoulli ields: Rewite fo sufce pessue v 0 v U sin K U p ps U sin p s U K K p 1 4sin 4 sin U U K v D s 0 The dg foce cn be witten s p p cos bd

Kutt-Joukovskis lift tteoem D s 0 Intoduce p p cos bd K U U D b 1 4sin 4 sin cos d 0 n t cos sin d 0 0 D Alembets pdo: The dg foce on ll bodies submeged in n inviscid fluis is zeo v 0

Kutt-Joukovskis lift tteoem Lift foce L L 0 U sin d U U L s 0 b 0 0 b Chpte 8 p p sin bd sin 4sin 0 K b U 0 sin sin 3 U 3 d 4 sin 0 d U K b Ub sin d b 1 v cos sin 0

Kutt-Joukovskis lift tteoem

Comment to empel 8.3 NB! Dt in fig 8.15 is vlid fo Re=3800, in the emple Re=60000. Re=3800; C L =1.44; C D =0.9 Re=60000; C L =0.91; C D =0.7

Flettne-oto Union Rotoplne, 1931. The ship Bucku, built in Hmbug 190, clindes, L=18.5m, D=.8 m. Speed 5-6 knots

Flettne-oto E-Ship 1, built in Kiel 010, 4 clindes + popelles. Speed m 17,5 knots

Comple potentil Comple velocit: Some emples: Unifom stem Line souce Line vote f f Chpte 8 z, i f, df dz i i i i f z Uze z m z ln z 0 z ik z ln z 0 u iv

Comple potentil Confoml mpping f Clinde with cicultion i z Uze mlnz z ik z z 0 ln 0 Joukovski ifoil z 1 z

Cone flow f A n A n e in n detemines the cone ngle n A cos ia n n sin

Cone flow f z Uze i Mpping: z A n with U 1 0 f A n A n e in A n cos ia n sin

Mioing Used to genete wlls

Aismmetic potentil flow 1. Unifom stem: 1 U sin U cos v v U cos U sin. Point souce/sink: mcos m v v Q 4 0 m 3. Point doublet: sin cos Note tht thee is no equivlence to the line vote

Aismmetisk potentil flow, Supeposition is vlid s befoe. Unifom flow+ souce i (,)=(-,0) + sink i (,)=(,0) = Rnkine ovoid Unifom flow+ doublet = sphee 1 U sin sin v v cos 1 3 U 3 3 1 U sin 3

Hdodnmic mss(, dded mss, vitul mss) When bod is cceleted the suounding flid will lso ccelete. The bod will then ppe hevie F m m h du dt Assuming potentil flow KE fluid 1 1 dmv U el mh

Hdodnmic mss Empel, Sphee: KE fluid 1 1 dmv U el mh v U 3 3 U cos v 3 3 V v v el sin dm sin dd Integte: KE fluid 3 3 U m h 3 3 Clinde: m h L

Hdodnmic mss Vibting clinde:

Hdodnmic mss Vibeting clinde: Hdodnmic mss in eltion to clinde mss t ving vbtionl fequenc