The rare decay H Zγ in perturbative QCD

Similar documents
Status of Higgs plus one jet at NNLO

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

Multiloop scattering amplitudes in the LHC Era

Precision Higgs physics. at hadron colliders

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum

NNLO Phenomenology Using Jettiness Subtraction

H + jet(s) (fixed order)

Simplified differential equations approach for NNLO calculations

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

SM Predictions for Gluon- Fusion Higgs Production

Simplified differential equations approach for the calculation of multi-loop integrals

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The Higgs pt distribution

Higgs Production at LHC

From Tensor Integral to IBP

ggf Theory Overview For Highest Precision

THE STRONG COUPLING AND LHC CROSS SECTIONS

New physics effects in Higgs cross sections

Multiloop integrals in dimensional regularization made simple

Fully exclusive NNLO QCD computations

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Precision Calculations for Collider Physics

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Multi-loop calculations: numerical methods and applications

Top mass effects in gluon fusion processes

arxiv:hep-ph/ v1 25 Sep 2002

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

N-jettiness as a subtraction scheme for NNLO

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

HIGGS BOSONS AT THE LHC

The Pentabox Master Integrals with the Simplified Differential Equations approach

Higgs + Jet angular and p T distributions : MSSM versus SM

Higher Order QCD Lecture 2

Towards improved predictions for electroweak vector boson pair production at the LHC

Numerical multi-loop calculations: tools and applications

NLO QCD corrections to Higgs boson pair production via gluon fusion

gg! hh in the high energy limit

Higgs-charm Couplings

Threshold Corrections To DY and Higgs at N 3 LO QCD

One-Mass Two-Loop Master Integrals for Mixed

The Pentabox Master Integrals with the Simplified Differential Equations approach

arxiv: v1 [hep-ph] 27 Aug 2009

δm W = 15 MeV δm top = 1 GeV

Higher-order QCD corrections to the Higgs-boson qt distribution

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

NNLO antenna subtraction with two hadronic initial states

Numerical Evaluation of Multi-loop Integrals

Heavy Quark Production at High Energies

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

Cross sections for SM Higgs boson production

Recent theoretical issues in Higgs production

Summary. Keith Ellis Fermilab

Potential Discoveries at the Large Hadron Collider. Chris Quigg

arxiv: v2 [hep-ph] 20 Jul 2014

NLO for Higgs signals

Threshold Corrections To DY and Higgs at N 3 LO QCD

The package TopoID and its applications to Higgs physics

HIGGS + 2 JET PRODUCTION AT THE LHC

Two-loop light fermion contribution to Higgs production and decays

The Higgs boson discovery. Kern-und Teilchenphysik II Prof. Nicola Serra Dr. Annapaola de Cosa Dr. Marcin Chrzaszcz

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

arxiv: v2 [hep-ph] 17 Jan 2019

High precision study for boosted Higgs at LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

Higgs Boson Phenomenology Lecture I

Differential Equations for Feynman Integrals

NNLO antenna subtraction with one hadronic initial state

W + W + jet compact analytic results

THE SEARCH FOR THE HIGGS BOSON AT THE LHC

Vector boson pair production at NNLO

Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

W + W Production with Many Jets at the LHC

Two-Loop Corrections to Top-Quark Pair Production

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Towards Jet Cross Sections at NNLO

The study of the extended Higgs boson sector within 2HDM model

Higgs Coupling Measurements!

THE TRANSVERSE MOMENTUM DISTRIBUTION OF THE HIGGS BOSON AT THE LHC

Model independent determination of the top quark Yukawa coupling from LHC and ILC data

HIGGS&AT&HADRON&COLLIDER

Numerical Evaluation of Multi-loop Integrals

Higgs Property Measurement with ATLAS

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

arxiv: v2 [hep-th] 7 Jul 2016

Search for Higgs in H WW lνlν

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome

Photon Coupling with Matter, u R

SM/BSM physics with GoSam

Precision Measurements in Electron-Positron Annihilation: Theory and Experiment

Higgs theory. Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep Friday, December 30, 11

Antenna Subtraction at NNLO

Searches for dark matter at CMS and ATLAS

MadGolem: Automated NLO predictions for SUSY and beyond

Higgs production at the Tevatron and LHC

Top-Antitop Production at Hadron Colliders

Transcription:

The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q H g q γ γ

Contents 1 Introduction 2 The decay in the Standard Model 3 Calculation of the two-loop amplitude Integral basis and differential equations Renormalization 4 Numerical results 5 Conclusions Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 0/20

Motivation: Experiment H γγ loop-mediated sensitive to new physics clean signature 20% relative precision Branching ratios 10 1 1 ττ cc bb gg WW ZZ LHC HIGGS XS WG 2010 H Zγ more background smaller branching ratio spin-dependent particle correlations through Z ll 2 10 3 10 γγ Zγ 100 120 140 160 180 200 M H [GeV] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 1/20

Motivation: Experiment H γγ loop-mediated sensitive to new physics clean signature 20% relative precision Branching ratios 10 1 1 ττ cc bb gg WW ZZ LHC HIGGS XS WG 2010 H Zγ more background smaller branching ratio spin-dependent particle correlations through Z ll 2 10 3 10 γγ Zγ 100 120 140 160 180 200 M H [GeV] broader spectrum of observables: more info on H couplings Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 1/20

Motivation: Theory H Zγ Analytical LO result available [Cahn, Chanowitz, Fleishon (1979)] [Bergstrom, Huth (1985)] Numerical NLO result in QCD available [Spira, Djouadi, Zerwas (1992)] H + j production Analytical NLO result: independent check NLO result in QCD available for m t [Schmidt (1997)] [Glosser, Schmidt (2002)] [de Florian, Grazzini, Kunszt (1999)] [Ravindran, Smith, van Neerven (2002)] NNLO calculation in QCD well-advanced for m t [Gehrmann, Glover, Jaquier, Koukoutsakis (2012)] [Chen, Gehrmann, Glover, Jaquier (2012)] [Boughezal, Caola, Melnikov, Petriello, Schulze (2013, 2015)] [Boughezal, Focke, Giele, Liu, Petriello (2015)] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 2/20

Motivation: Theory H Zγ Analytical LO result available [Cahn, Chanowitz, Fleishon (1979)] [Bergstrom, Huth (1985)] Numerical NLO result in QCD available [Spira, Djouadi, Zerwas (1992)] H + j production Analytical NLO result: independent check NLO result in QCD available for m t [Schmidt (1997)] [Glosser, Schmidt (2002)] [de Florian, Grazzini, Kunszt (1999)] [Ravindran, Smith, van Neerven (2002)] NNLO calculation in QCD well-advanced for m t [Gehrmann, Glover, Jaquier, Koukoutsakis (2012)] [Chen, Gehrmann, Glover, Jaquier (2012)] [Boughezal, Caola, Melnikov, Petriello, Schulze (2013, 2015)] [Boughezal, Focke, Giele, Liu, Petriello (2015)] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 2/20

Motivation: Theory gg gq qq sum 10 2 [Harlander, Neumann (2013)] 1 σ i,j dσi,j dpt [1/GeV] 10 3 10 4 10 5 10 6 Operator O 1 2 O 1O 2 O 1O 3 O 1O 5 SM SM m t 100 300 500 700 100 300 500 700 100 300 500 700 100 300 500 700 p T [GeV] H + j production EFT is likely to break down at high p T High-priority aim: NLO QCD corrections with full m t dependence Two-loop integrals for H Zγ pave the way Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 3/20

Outline of the calculation Qgraf Generate Feynman diagrams for process H(q) Z(p 1 )γ(p 2 ) Z Z Z Z H W H q H g q H g q γ γ γ γ Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 4/20

Outline of the calculation Qgraf Generate Feynman diagrams for process H(q) Z(p 1 )γ(p 2 ) Z Z Z Z H W H q H g q H g q γ γ γ γ Form Project relevant Feynman diagrams onto tensor structure with projector M = A ɛ 1,µ (p 1, λ 1 ) ɛ 2,ν (p 2, λ 2 ) Pµν P 2 P µν = p µ 2 pν 1 (p 1 p 2 )g µν Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 4/20

Outline of the calculation Qgraf Generate Feynman diagrams for process H(q) Z(p 1 )γ(p 2 ) Z Z Z Z H W H q H g q H g q γ γ γ γ Form Project relevant Feynman diagrams onto tensor structure with projector M = A ɛ 1,µ (p 1, λ 1 ) ɛ 2,ν (p 2, λ 2 ) Pµν P 2 P µν = p µ 2 pν 1 (p 1 p 2 )g µν Reduze Reduce Feynman Integrals to set of Master Integrals (MIs) Integration-by-parts identities (IBPs) Laporta algorithm Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 4/20

Outline of the calculation Qgraf Generate Feynman diagrams for process H(q) Z(p 1 )γ(p 2 ) Z Z Z Z H W H q H g q H g q γ γ γ γ Form Project relevant Feynman diagrams onto tensor structure with projector M = A ɛ 1,µ (p 1, λ 1 ) ɛ 2,ν (p 2, λ 2 ) Pµν P 2 P µν = p µ 2 pν 1 (p 1 p 2 )g µν Reduze Reduce Feynman Integrals to set of Master Integrals (MIs) Integration-by-parts identities (IBPs) Laporta algorithm Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 4/20

The amplitude can be further decomposed A = c W A W + q c q A q with c W = cos θ w sin θ w, Born-level contribution: ( ) 2 Q q I 3 q 2 Q q sin 2 θ w c q = N c sin θ w cos θ w NLO QCD corrections: A q (m H, m Z, m q, α s, µ) = A (1) q A (1) = c W A (1) W + c ta (1) t + c b A (1) b (m H, m Z, m q )+ α s(µ) π A(2) q (m H, m Z, m q, µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 5/20

The amplitude can be further decomposed A = c W A W + q c q A q with c W = cos θ w sin θ w, Born-level contribution: ( ) 2 Q q I 3 q 2 Q q sin 2 θ w c q = N c sin θ w cos θ w NLO QCD corrections: A q (m H, m Z, m q, α s, µ) = A (1) q A (1) = c W A (1) W + c ta (1) t + c b A (1) b (m H, m Z, m q )+ α s(µ) π A(2) q (m H, m Z, m q, µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 5/20

The decay width is obtained from the amplitude as Parametrization π G F α 2 Γ = 4 ( ) A 2 2 mh 3 m 2 H mz 2 We are left with computation of MIs Use Landau-type variables to absorb natural roots mh 2 = mq 2 (1 h) 2 h 1 4 m2 q m 2 H h + 1 h 1,, mz 2 = mq 2 (1 z) 2 z 1 4 m2 q m 2 Z z + 1 z 1 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 6/20

The decay width is obtained from the amplitude as Parametrization π G F α 2 Γ = 4 ( ) A 2 2 mh 3 m 2 H mz 2 We are left with computation of MIs Use Landau-type variables to absorb natural roots mh 2 = mq 2 (1 h) 2 h 1 4 m2 q m 2 H h + 1 h 1,, mz 2 = mq 2 (1 z) 2 z 1 4 m2 q m 2 Z z + 1 z 1 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 6/20

Differential equations 1 Choose MI 2 Compute derivative of integrand with respect to internal mass and external invariants 3 Use IBPs to relate resulting integrals to original MI [Kotikov (1991)] [Remiddi (1997)] [Gehrmann, Remiddi (2000)] Full system takes form of total differential N d I(h, z) = R k (ɛ) d log(d k ) I(h, z) k=1 d 1 = z d 5 = h + 1 d 9 = h 2 hz h + 1 d 2 = z + 1 d 6 = h 1 d 10 = h 2 z hz h + z d 3 = z 1 d 7 = h z d 11 = z 2 hz z + 1 d 4 = h d 8 = hz 1 d 12 = z 2 h hz z + h... d N Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 7/20

Differential equations 1 Choose MI 2 Compute derivative of integrand with respect to internal mass and external invariants 3 Use IBPs to relate resulting integrals to original MI [Kotikov (1991)] [Remiddi (1997)] [Gehrmann, Remiddi (2000)] Full system takes form of total differential N d I(h, z) = R k (ɛ) d log(d k ) I(h, z) k=1 d 1 = z d 5 = h + 1 d 9 = h 2 hz h + 1 d 2 = z + 1 d 6 = h 1 d 10 = h 2 z hz h + z d 3 = z 1 d 7 = h z d 11 = z 2 hz z + 1 d 4 = h d 8 = hz 1 d 12 = z 2 h hz z + h... d N Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 7/20

Differential equations 1 Choose MI 2 Compute derivative of integrand with respect to internal mass and external invariants 3 Use IBPs to relate resulting integrals to original MI [Kotikov (1991)] [Remiddi (1997)] [Gehrmann, Remiddi (2000)] Full system takes form of total differential N ( ) d I(h, z) = R k ɛ d log(d k ) I(h, z) k=1 d 1 = z d 5 = h + 1 d 9 = h 2 hz h + 1 d 2 = z + 1 d 6 = h 1 d 10 = h 2 z hz h + z d 3 = z 1 d 7 = h z d 11 = z 2 hz z + 1 d 4 = h d 8 = hz 1 d 12 = z 2 h hz z + h... d N Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 7/20

Differential equations Canonical form [[Henn (2013)]] 12 d M(h, z) = ɛ R k d log(d k ) M(h, z) k=1 reduced number of polynomials d k can be integrated in terms of GHPLs: x 1 G (w 1,..., w n ; x) dt G (w 2,..., w n ; t) 0 t w 1 ( ) G 0n ; x logn x n! leads to linear combinations of GHPLs of homogeneous weight Change basis from Laporta integrals I to canonical integrals M Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 8/20

Differential equations Canonical form [[Henn (2013)]] 12 d M(h, z) = ɛ R k d log(d k ) M(h, z) k=1 reduced number of polynomials d k can be integrated in terms of GHPLs: x 1 G (w 1,..., w n ; x) dt G (w 2,..., w n ; t) 0 t w 1 ( ) G 0n ; x logn x n! leads to linear combinations of GHPLs of homogeneous weight Change basis from Laporta integrals I to canonical integrals M Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 8/20

Integral basis 1 Start with Laporta basis: [Gehrmann, von Manteuffel, Tancredi, Weihs (2014)] Topology under consideration must have at most linear dependence on ɛ be triangular in D = 4 dimensions I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 9/20

Integral basis 1 Start with Laporta basis: [Gehrmann, von Manteuffel, Tancredi, Weihs (2014)] I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 25 I 26 I 27 I 28 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 9/20

Integral basis 1 Start with Laporta basis: [Gehrmann, von Manteuffel, Tancredi, Weihs (2014)] I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 25 I 26 I 27 I 28 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 9/20

Integral basis di 15 2 Perform transformation to canonical basis by integrating out homogeneous parts in D = 4 dz = h z d 1 d 2 d 3 d 4 d 9 d 10 (2 z (h 2 + 1) h (z + 1) 2 ) { 3 2 h z (h 1)2 ( ( h 2 + 1 ) ( z 2 + 1 ) h (z + 1) 2) I 7 h [ h 4 z ( z 2 + 1 ) h ( h 2 + 1 ) ( z 4 + z 3 + 4z 2 + z + 1 ) 1 z +h ( 2 z 4 + 4z 3 + 2z 2 + 4z + 1 ) + z ( z 2 + 1 )] (2 I 13 + I 14 ) [2 h 6 z ( 2 z 2 + 1 ) 2 h z ( h 4 + 1 ) (z + 1) 2 ( 2 z 2 z + 2 ) +h 2 ( h 2 + 1 ) ( z 6 + 8 z 5 + 17 z 4 + 8 z 3 + 17 z 2 + 8 z + 1 ) + 2 z 2 ( z 2 + 1 )] I 15 } di 15 dh = h z d 1 d 4 d 9 d 10 (2 z (h 2 + 1) h (z + 1) 2 ) { 3 2 z2 (h 1) 3 (h + 1) I 7 + z ( h 2 1 ) ( z ( h 2 + 1 ) h ( z 2 + 1 )) (2 I 13 + I 14 ) h2 1 h [2z 2 ( h 4 + 1 ) 2hz (z + 1) 2 ( h 2 + 1 ) + h 2 ( z 4 + 2z 3 + 6z 2 + 2z + 1 )] I 15 } Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 10/20

Integral basis 2 Perform transformation to canonical basis by integrating out homogeneous parts in D = 4 M 15 = z (h2 + 1) h (z + 1) 2 z (h 2 + 1) h (z + 1) 2 [ 3 (h 1) 2 2 h I 7 (h z)(hz 1) (2 I 13 + I 14 ) hz (z2 1)(h 2 ] + 1 h (z + 1)) I 15 hz Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 10/20

Integral basis 2 Perform transformation to canonical basis by integrating out homogeneous parts in D = 4 [ dm 15 = ɛ (M 2 + 32 ) M 7 + 5 M 13 + M 14 4 M 15 d log(d 1 ) ( ) 3 + 2 M 7 + 2 M 13 + M 14 2 M 15 d log(d 2 ) (M 2 + 32 ) M 7 + M 13 M 14 M 15 d log(d 3 ) (M 2 + 2 M 6 + 52 ) M 7 + M 13 M 14 M 15 d log(d 4 ) + 3 M 7 d log(d 6 ) + (M 2 + M 6 + 2 M 7 + 3 M 13 2 M 15 ) d log(d 7 ) + (M 2 M 6 + M 7 + 3 M 13 2 M 15 ) d log(d 8 ) ( ) ] 3 2 M 7 + 2 M 13 + M 14 M 15 d log(d 9 ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 10/20

Integration Integrate differential equation in h or z up to constant C(z) or C(h) Use boundary conditions: h = 1 mh 2 = 0 z = 1 mz 2 = 0 h = z mh 2 = mz 2 h = 1 z m 2 H = m 2 Z Perform transformations with the help of symbol and coproduct: G (w 1 (x),..., w n (x); x) G (a 1,..., a n ; x) G (w 1 (x),..., w n (x); y) G (c 1 (y),..., c n (y); x) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 11/20

Integration Integrate differential equation in h or z up to constant C(z) or C(h) Use boundary conditions: h = 1 mh 2 = 0 z = 1 mz 2 = 0 h = z mh 2 = mz 2 h = 1 z m 2 H = m 2 Z Perform transformations with the help of symbol and coproduct: G (w 1 (x),..., w n (x); x) G (a 1,..., a n ; x) G (w 1 (x),..., w n (x); y) G (c 1 (y),..., c n (y); x) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 11/20

Integration Integrate differential equation in h or z up to constant C(z) or C(h) Use boundary conditions: h = 1 mh 2 = 0 z = 1 mz 2 = 0 h = z mh 2 = mz 2 h = 1 z m 2 H = m 2 Z Perform transformations with the help of symbol and coproduct: G (w 1 (x),..., w n (x); x) G (a 1,..., a n ; x) G (w 1 (x),..., w n (x); y) G (c 1 (y),..., c n (y); x) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 11/20

Integration Results in terms of GHPLs up to weight four G (a 1,..., a n ; h) with a i {0, ±1, z, 1 z, J z, 1 J z, K ± z, L ± z } G (b 1,..., b n ; z) with b i {0, ±1, c, c} c = 1 ( 1 + ) i 3 K ± z = 1 (1 + z ± ) 3 + 2 z + z 2 2 2 z J z = 1 z + z 2 L ± z = 1 (1 + z ± ) 1 + 2 z 3 z 2 2 z verified through differential equation in other variable checked numerically against SecDec [Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke (2015)] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 12/20

Integration Results in terms of GHPLs up to weight four G (a 1,..., a n ; h) with a i {0, ±1, z, 1 z, J z, 1 J z, K ± z, L ± z } G (b 1,..., b n ; z) with b i {0, ±1, c, c} c = 1 ( 1 + ) i 3 K ± z = 1 (1 + z ± ) 3 + 2 z + z 2 2 2 z J z = 1 z + z 2 L ± z = 1 (1 + z ± ) 1 + 2 z 3 z 2 2 z verified through differential equation in other variable checked numerically against SecDec [Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke (2015)] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 12/20

Integration Example M 15 = ɛ 2 [ π2 6 G( 1 z, 0; h) + G(z, 0; h) G(0; z)g( 1 ; h) G(0; z)g(z; h) + G(0; z)g(0; h) z 2G(0, 0; h) + G(1, 0; z)] [ + ɛ 3 5ζ 3 + 2G( 1 z, 1 z, 0; h) 2G( 1 2π2, z, 0; h) + z 3 G( 1 z ; h) + 6G( 1, 1, 0; h) z 3G( 1 z, 0, 0; h) + 2G( 1 z, 1, 0; h) + 2G(z, 1 π2, 0; h) 2G(z, z, 0; h) + G(z; h) z 3 6G(z, 1, 0; h) + 5G(z, 0, 0; h) 2G(z, 1, 0; h) G(K z, 1 z, 0; h) + G(K z, z, 0; h) π2 6 G(K z ; h) + 2G(K z, 0, 0; h) G(K + z, 1 z, 0; h) + G(K + z, z, 0; h) π2 6 G(K + z ; h) + 2G(K + π2 z, 0, 0; h) + 3 G( 1; z) + 2G( 1, 0; z)g( 1 ; h) + 2G( 1, 0; z)g(z; h) z 2G( 1, 0; z)g(0; h) + G( 1, 0, 0; z) 2G( 1, 1, 0; z) G(0, 1 z π2, 0; h) G(0; z) 2 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 13/20

Integration Example + 2G(0; z)g( 1 z, 1 z ; h) + 2G(0; z)g( 1 z, z; h) 2G(0; z)g( 1 z, 0; h) + 2G(0; z)g(z, 1 z ; h) + 2G(0; z)g(z, z; h) 2G(0; z)g(z, 0; h) G(0; z)g(k z, 1 z ; h) G(0; z)g(k z, z; h) + G(0; z)g(k z, 0; h) G(0; z)g(k + z, 1 z ; h) G(0; z)g(k + z, z; h) + G(0; z)g(k + z, 0; h) G(0; z)g(0, 1 ; h) G(0; z)g(0, z; h) + G(0, z, 0; h) + G(0; h)g(1, 0; z) + 12G(0, 1, 0; h) z G(0, 0; z)g( 1 z ; h) G(0, 0; z)g(z; h) G(0, 0; z)g(k z ; h) G(0, 0; z)g(k + z ; h) + 2G(0, 0; z)g(0; h) + G(0, 0; h)g(0; z) G(0, 0, 0; z) 8G(0, 0, 0; h) + 2G(0, 1, 0; z) + 4G(0, 1, 0; h) π2 3 G(1; z) 2G(1, 1, 0; z) 2G(1, 0; z)g( 1 ; h) 2G(1, 0; z)g(z; h) z +G(1, 0; z)g(k z ; h) + G(1, 0; z)g(k + z ; h) + 2G(1, 0, 0; z) 6G(1, 0, 0; h) + G(1, 1, 0; z) ] + O ( ɛ 4) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 13/20

Renormalization (a) quark mass M q and Yukawa coupling Y q in OS scheme A (2,a) q (m H, m Z, M q ) = A (2) q,bare + Z OS A (1) q + δm OS C (1) q m q Renormalization constants Z OS = α s(µ) π 16 i C F π2 S ɛ 4 δm OS = m q Z OS 3 2ɛ ɛ (1 2ɛ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 14/20

Renormalization (a) quark mass M q and Yukawa coupling Y q in OS scheme A (2,a) q (m H, m Z, M q ) = A (2) q,bare + Z OS A (1) q + δm OS C (1) q m q Renormalization constants Z OS = α s(µ) π 16 i C F π2 S ɛ 4 δm OS = m q Z OS 3 2ɛ ɛ (1 2ɛ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 14/20

Renormalization (a) quark mass M q and Yukawa coupling Y q in OS scheme A (2,a) q (m H, m Z, M q ) = A (2) q,bare + Z OS A (1) q + δm OS C (1) q m q Renormalization constants Counterterms Z OS = α s(µ) π 16 i C F π2 S ɛ 4 δm OS = m q Z OS 3 2ɛ ɛ (1 2ɛ) Z Z C (1) q = H q + H q + H q Z γ γ γ Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 14/20

Renormalization (b) quark mass M q in OS, Yukawa coupling y q in MS scheme A (2,b) q (m H, m Z, m q, µ) = A (2,a) q (m H, m Z, m q (µ)) + A (1) q (m H, m Z, m q (µ)) The finite shift in the amplitude is induced by expressing the OS quantities in terms of MS quantities: M q = m q (µ) (1 + ) Y q = y q (µ) (1 + ) ( ) = α s(µ) C F 1 + 3 π 4 log µ 2 m 2 q(µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 15/20

Renormalization (c) quark mass m q and Yukawa coupling y q in MS scheme A (2,c) q (m H, m Z, m q, µ) = A (2,b) q (m H, m Z, m q (µ)) + A(1) q (m H, m Z, M q ) M q is defined through the following replacements in A (1) q : h = h 2 h h 1 h + 1 z = z 2 z z 1 z + 1 Mq=m q(µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 16/20

Numerical results Analytic continuation from Euclidean to Minkowski region Region I: m 2 Z < m2 H < 4 m2 q top quark amplitude Region II: m 2 Z < 4 m2 q < m 2 H not needed Region III: 4 m 2 q < m 2 Z < m2 H bottom quark amplitude NLO decay width Γ (2) in renormalization schemes (a), (b) and (c) [ Γ (2,a) = [ Γ (2,b) = 7.04500 + 0.42617 α s(µ) π 7.06369 + α ( s(µ) π µ=m H = 7.06363 kev < 10 5 [ Γ (2,c) = 7.02908 + α s(µ) π ( µ=m H = 7.05402 kev 3 o / oo ] kev µ=mh = 7.06033 kev 2 o / oo 0.53038 0.76333 log m 2 t (µ) + 0.01224 log µ 2 m 2 b(µ) µ 2 )] kev )] µ 2 0.64310 + 0.10551 log m 2 t (µ) + 0.01446 log µ 2 kev m 2 b(µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 17/20

Numerical results Analytic continuation from Euclidean to Minkowski region Region I: m 2 Z < m2 H < 4 m2 q top quark amplitude Region II: m 2 Z < 4 m2 q < m 2 H not needed Region III: 4 m 2 q < m 2 Z < m2 H bottom quark amplitude NLO decay width Γ (2) in renormalization schemes (a), (b) and (c) [ Γ (2,a) = [ Γ (2,b) = 7.04500 + 0.42617 α s(µ) π 7.06369 + α ( s(µ) π µ=m H = 7.06363 kev < 10 5 [ Γ (2,c) = 7.02908 + α s(µ) π ( µ=m H = 7.05402 kev 3 o / oo ] kev µ=mh = 7.06033 kev 2 o / oo 0.53038 0.76333 log m 2 t (µ) + 0.01224 log µ 2 m 2 b(µ) µ 2 )] kev )] µ 2 0.64310 + 0.10551 log m 2 t (µ) + 0.01446 log µ 2 kev m 2 b(µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 17/20

Numerical results Partial width (a) (b) (c) Γ (1) WW 7.83473859 7.83473859 7.83473859 Γ (1) Wt 0.83278001 0.80390896 0.83655274 Γ (1) Wb 0.02206641 0.01288843 0.00904595 Γ (1) tt 0.02212973 0.02062193 0.02233069 Γ (1) tb 0.00117276 0.00066123 0.00048294 Γ (1) bb 0.00002094 0.00000714 0.00000324 Γ (1) 7.04500291 7.06368591 7.02908279 Γ (2) Wt 0.02203714 0.00078280 0.02457012 Γ (2) Wb 0.00586227 0.00072730 0.00175365 Γ (2) tt 0.00117120 0.00004016 0.00131174 Γ (2) tb 0.00031156 0.00003731 0.00009362 Γ (2) bt 0.00003103 0.00000064 0.00001418 Γ (2) bb 0.00001585 0.00000081 0.00000078 Γ (2) 7.06033332 7.06368591 7.05401616 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 18/20

Numerical results 7.08 7.075 (a) (b) (c) 7.07 Γ (2) in kev 7.065 7.06 0.4 o / oo 7.055 1.3 o / oo 7.05 7.045 µ = m H 50 100 150 200 250 300 µ in GeV µ = 2m H Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 19/20

Conclusions Renormalization OS scheme MS scheme hybrid scheme with OS mass and MS Yukawa coupling Numerical results Corrections in sub-per-cent range and consistent with each other Residual QCD uncertainty: 1.7 o / oo Checks Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)] Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)] Master Integrals Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations Important ingredient to two-loop amplitudes of H + j production Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 20/20

Conclusions Renormalization OS scheme MS scheme hybrid scheme with OS mass and MS Yukawa coupling Numerical results Corrections in sub-per-cent range and consistent with each other Residual QCD uncertainty: 1.7 o / oo Checks Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)] Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)] Master Integrals Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations Important ingredient to two-loop amplitudes of H + j production Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 20/20

Conclusions Renormalization OS scheme MS scheme hybrid scheme with OS mass and MS Yukawa coupling Numerical results Corrections in sub-per-cent range and consistent with each other Residual QCD uncertainty: 1.7 o / oo Checks Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)] Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)] Master Integrals Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations Important ingredient to two-loop amplitudes of H + j production Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 20/20

Conclusions Renormalization OS scheme MS scheme hybrid scheme with OS mass and MS Yukawa coupling Numerical results Corrections in sub-per-cent range and consistent with each other Residual QCD uncertainty: 1.7 o / oo Checks Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)] Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)] Master Integrals Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations Important ingredient to two-loop amplitudes of H + j production Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, 2015 20/20