Calcareous Nannofossil Biostratigraphy of A, B, C, D Wells, Offshore Niger Delta, Nigeria

Similar documents
BIOZONATION AND CORRELATION OF TWO WELLS IN NIGER DELTA USING CALCAREOUS NANNOFOSSILS

CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY OF THE SUBSURFACE MIOCENE SEQUENCE, NORTHEAST NILE DELTA, EGYPT

7. DATA REPORT: CALCAREOUS NANNOFOSSIL STRATIGRAPHY (ODP LEG 177, SOUTHERN OCEAN) 1 AT SITES 1088 AND 1090 INTRODUCTION MATERIAL AND METHODS

73 ( 4387m > 302lT )

Sequence Stratigraphic Interpretation of Kafe-1 Field, Offshore Western Niger Delta, Nigeria

Chapter 3 Microfossils and Biostratigraphy

Lithofacies Characterization of Sedimentary Succession from Oligocene to Early Miocene Age in X2 Well, Greater Ughelli Depo Belt, Niger Delta, Nigeria

Calcareous nannofossil biostratigraphy of the Mühlbach section (Gaindorf Formation, Lower Badenian), Lower Austria

47. INTERCALIBRATION OF LEG 133 BIOSTRATIGRAPHIES 1. Stefan Gartner, 2 Wuchang Wei, 3 Dick Kroon, 4 and Christian Betzler 5

7. CENOZOIC CALCAREOUS NANNOFOSSILS, DEEP SEA DRILLING PROJECT SITES 415 AND 416, MOROCCAN BASIN

14. COCCOLITH STRATIGRAPHY LEG 9, DEEP SEA DRILLING PROJECT 1

16. NEOGENE CALCAREOUS NANNOFOSSILS: WESTERN MEDITERRANEAN BIOSTRATIGRAPHY AND PALEOCLIMATOLOGY1

BADENIAN (MIDDLE MIOCENE) CALCAREOUS NANNOFOSSILS FROM PÂGLIŞA (CLUJ DISTRICT): BIOSTRATIGRAPHICAL IMPORTANCE

Kastens, K. A., Mascle, J., et al., 1990 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 107

4. ASPECTS OF CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY AND ABUNDANCE IN THE PLIOCENE AND LATE MIOCENE OF SITE S. Gartner 2 and J.-P.

Middle Miocene Carbonate Crash in the Niger Delta: Evidence from Calcareous Nannofossils

16. QUANTITATIVE DISTRIBUTION PATTERNS OF OLIGOCENE AND MIOCENE CALCAREOUS NANNOFOSSILS FROM THE WESTERN EQUATORIAL INDIAN OCEAN 1

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study*

平成 29 年博士論文 [ 博士 ( 工学 ) Santi Dwi Pratiwi D ST (B. Eng) (Indonesia), M.Sc. (Akita)

Hydrocarbon Volumetric Analysis Using Seismic and Borehole Data over Umoru Field, Niger Delta-Nigeria

46. DATA REPORT: LATE PLIOCENE DISCOASTER ABUNDANCES FROM HOLE 806C 1

EGAS. Ministry of Petroleum

Determination of Geothermal Gradient in the Eastern Niger Delta Sedimentary Basin from Bottom Hole Temperatures

Meandering Miocene Deep Sea Channel Systems Offshore Congo, West Africa

EGAS. Ministry of Petroleum

Mackenzie Delta: Fresh Look At An Emerging Basinpart 1

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom

International Journal of Petroleum and Geoscience Engineering Volume 04, Issue 01, Pages 58-65, 2016

Bulletin of Earth Sciences of Thailand

35. MID-ATLANTIC RIDGE COCCOLITH AND SILICOFLAGELLATE BIOSTRATIGRAPHY, DEEP SEA DRILLING PROJECT SITES 558 AND 563 1

British Journal of Applied Science & Technology 4(2): , SCIENCEDOMAIN international

8. DATA REPORT: CALCAREOUS NANNOFOSSIL DATA FROM THE EOCENE

Biostratigraphic and Lithostratigraphic Correlation of Sedimentary Strata in the Atlantic Coastal Plain

Sequence Stratigraphy as a tool for water resources management in alluvial coastal aquifers: application to the Llobregat delta (Barcelona, Spain)

Well Logs 3 D Seismic Sequence Stratigraphy Evaluation of Holu Field, Niger Delta, Nigeria

Integration of Well Logs and Seismic Data for Prospects Evaluation of an X Field, Onshore Niger Delta, Nigeria

Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques.

Biostratigraphy and evolution of Miocene Discoaster spp. from IODP Site U1338 in the equatorial Pacific Ocean

9. THE FOSSIL DISTRIBUTION OF COCCOLITHOPHORE GENUS GEPHYROCAPSA KAMPTNER AND RELATED PLIO-PLEISTOCENE CHRONOSTRATIGRAPHIC PROBLEMS 1

Trapping Mechanisms along North Similan and Lanta Trends, Pattani Basin, Gulf of Thailand

EMEKA M. ILOGHALU, NNAMDI AZIKIWE UNIVERSITY, AWKA, NIGERIA.

Stratigraphy. The part of geology that deals with the formation, composition, sequence, and correlation of rocks, especially stratified rocks

Florida State University Libraries

9. CALCAREOUS NANNOFOSSILS IN THE BASAL ZANCLEAN OF THE EASTERN MEDITERRANEAN SEA: REMARKS ON PALEOCEANOGRAPHY AND SAPROPEL FORMATION 1

Figure 1: Location and bathymetry of the study area. Gulf of Guinea. Cameroon. Congo. Gabon. PGS/DGH Gabon MegaSurvey Coverage (35000Km 2 ) Eq.

RELINQUISHMENT REPORT FOR LICENCE P.1663, BLOCK 29/4b and 29/5e

Overpressure Prediction In The North-West Niger Delta, Using Porosity Data

THE MIOCENE CALCAREOUS NANNOFOSSILS FROM BISTRIŢA AREA (TRANSYLVANIA, ROMANIA)

4. DATA REPORT: PALEOCENE MIOCENE NANNOFOSSIL BIOSTRATIGRAPHY, ODP LEG 197 HOLES 1203A AND 1204A (DETROIT SEAMOUNT, NORTHWESTERN PACIFIC) 1

NAPE 2011 Lagos, Nigeria 28 November-2 December 2011 Extended Abstract

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data*

FORMATION EVALUATION OF SIRP FIELD USING WIRELINE LOGS IN WESTERN DEPOBELT OF NIGER DELTA

Distribution of Overpressure and its Prediction in Saurashtra Dahanu Block, Western Offshore Basin, India*

Petrophysical Analysis and Sequence Stratigraphy Appraisal from Well logs of Bobo field, South-Eastern, Niger Delta

STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA

Sedimentary Fill Modeling: Relationships to Sequence Stratigraphy and Its Implications for Hydrocarbon Exploration in the Niger Delta, Nigeria.

A Simplified Guide For Sequence Stratigraphy:

Deepwater Hydrocarbon Potentialof Orange Basin, South Africa: An Untested Oil Play

SPECIALIST GEOLOGY SERVICES

Evaluation of Neocomian Shale source rock In Komombo Basin, Upper Egypt

RESERVOIR CHARACTERIZATION USING SEISMIC AND WELL LOGS DATA (A CASE STUDY OF NIGER DELTA)

1-D Electrical Resistivity Survey For Groundwater In Ketu-Adie Owe, Ogun State, Nigeria.

A comparison of structural styles and prospectivity along the Atlantic margin from Senegal to Benin. Peter Conn*, Ian Deighton* & Dario Chisari*

Lucas F.A, Omodolor Hope E *

20. COCCOLITH STRATIGRAPHY, TROPICAL EASTERN PACIFIC OCEAN, DEEP SEA DRILLING PROJECT LEG 54

Further details are available at

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia*

SUMMARY OF SCAN SITE 5

Bulletin of Earth Sciences of Thailand. Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand

Estimation of Water Saturation Using a Modeled Equation and Archie s Equation from Wire-Line Logs, Niger Delta Nigeria

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 85 (Al Uqlah North)

Kilometre-Scale Uplift of the Early Cretaceous Rift Section, Camamu Basin, Offshore North-East Brazil*

Accuracy of dating methods utilised

Petroleum geology framework, West Coast offshore region

REGIONAL GEOLOGY IN KHMER BASIN

Process, Zeit Bay Fields - Gulf of Suez, Egypt*

BALOCHISTAN FOLDBELT BASIN

30. NORTH ATLANTIC LATE MIOCENE STABLE-ISOTOPE STRATIGRAPHY, BIOSTRATIGRAPHY, AND MAGNETOSTRATIGRAPHY 1

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities

I. INTRODUCTION 1.1. Background and Problem Statement

Fault seal analysis: a regional calibration Nile delta, Egypt

Late Cretaceous biostratigraphy and adaptive radiation of the calcareous nannofossil genus Eiffellithus

SEDIMENTARY BASINS BASIN TYPES ACCORDING TO TECTONIC. by Prof. Dr. Abbas Mansour

2011 SEG SEG San Antonio 2011 Annual Meeting 1134

Search and Discovery Article #10532 (2013)** Posted October 21, Abstract

Sequence Stratigraphic Analysis of Mixed, Reefal Carbonate and Siliciclastic Systems. Ashton Embry. Geological Survey of Canada.

Middle Eocene western north Atlantic biostratigraphy and environmental conditions

Maturity Modeling of Gomin and South Gomin fields Southern Pattani Basin, Gulf of Thailand

Figure 1 Extensional and Transform Fault Interaction, Influence on the Upper Cretaceous Hydrocarbon System, Equatorial Margin, West Africa.

Formation Evaluation of an Onshore Oil Field, Niger Delta Nigeria.

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use.

Southern Songkhla Basin, Gulf of Thailand

Blocks 31, 32, 33, 34, 35 & 36/03 Southeast Offshore Vietnam

Sequence Stratigraphic Framework of the Paradise-Field Niger Delta, Nigeria.

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 6 (Iryam)

Detecting and Predicting Over Pressure Zones in the Niger Delta, Nigeria: A Case Study of Afam Field.

Gulf of Mexico datapack of biostratigraphy and regional stratigraphy

Deepwater Niger Delta fold-and-thrust belt modeled as a critical-taper wedge: The influence of a weak detachment on styles of fault-related folds

Integrated well log and 3-D seismic data interpretation for the Kakinada area of KG PG offshore basin

Gulf of Mexico datapack of biostratigraphy and regional stratigraphy

Transcription:

Earth Science Research; Vol. 3, No. 1; 2014 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Calcareous Nannofossil Biostratigraphy of A, B, C, D Wells, Offshore Niger Delta, Nigeria Ajayi E. O. 1 & Okosun E. A. 2 1 Bio-Metrics Geo Consult Ltd, Plot 68, Cascurina Close, Gaduwa Estate, Abuja, Nigeria 2 Dept of Geology, Federal University of Technology, Minna, Nigeria Correspondence: Ajayi, E. O., Bio-Metrics Geo Consult Ltd, Plot 68, Cascurina Close, Gaduwa Estate, Abuja, Nigeria. Tel: 234-80-033-153-422. E-mail: zusiajayi@yahoo.com Received: November 19, 2013 Accepted: December 2, 2013 Online Published: January 24, 2014 doi:10.5539/esr.v3n1p108 URL: http://dx.doi.org/10.5539/esr.v3n1p108 Abstract The calcareous nannofossil biostratigraphy of four deep water wells, A, B, C, D, offshore Niger delta has been studied in order to document their biostratigraphic distribution, establish biozonation and stratigraphic correlation. Ditch cutting samples were collected at 30 ft intervals. They were processed according to the standard calcareous nannofossil sample preparation technique. A total of forty-two nannofossil species were identified in the four wells. Most parts of the wells are characterized by abundant and diverse nannofossil assemblages which permitted the subdivision of the sections into zones. A total of five zones and two subzones were identified from this study based on diagnostic marker species and notable nannofossil events. The zones are Catinaster coalitus zone (NN8), Discoaster hamatus (NN9), Discoaster loeblichi which occupy the base of Discoaster berggrenii and the top of Discoaster bollii was used to identify the NN10 zone. The main marker for this zone which is Discoaster calcaris is missing in the study wells; this may be due to dissolution of the calcitic wall during sedimentation process. Other zones encountered in this study are Discoaster berggrenii subzone (NN11a), Discoaster quinqueramus subzone (NN11b), Amaurolithus tricorniculatus zone (NN12) and Ceratolithus rugosus zone (NN13). The age of the strata ranges from the middle Miocene to the early Pliocene. The zones were based on the first and last appearances of maker species as well as their relative abundances. The occurrence of Amaurolithus delicatus in wells C and B implies that the well intervals containing the species cannot be younger than early Pliocene age. The four wells show good correlation with each other based on the identified zones. The biozones identified in this study will be useful for subdivision and correlation work in the deep offshore Niger delta Neogene sequence. Keywords: biostratigraphy, calcareous nannofosils, biozones, Neogene sequence, well correlation, relative abundances, characterization, stratigraphy 1. Introduction As the world class hydrocarbon matures, most of its subsurface uncertainties lay at reservoir scale. The need for well site biostratigrapher to monitor the drilling and correlate the strata is essential to avoid abortive and unprofitable exercise. Calcareous Nannofossil therefore is a major tool used by the biostratigrapher in the characterization of the reservoir strata and correlation in the well site operation. The importance of biostratigraphic correlation is critical in the construction of accurate time slice and play fairway analysis in Petroleum exploration. The aim of this study is to document the distribution of calcareous nannofossils, determine their Biostratigraphy and delineate biozones, correlate the wells and interpret their geological history. 2. Location of Study Area and Geology The wells are located in the offshore Niger Delta, Nigeria, which is situated in the Gulf of Guinea. (Figure 1) Wells D and C are located in the western arm of the Charcot fracture zone, while Wells B and A are located in the eastern section of the Charcot fracture zone. The materials used for this study were obtained from deep offshore field owned by Shell Nigeria Exploration Petroleum Company (SNEPCo), Lagos. The Niger Delta is subdivided into three diachronous lithostratigraphic units. These are the Benin Formation. (mostly continental sands), the Agbada Formation (alternation of sands and shales) and the Akata Formation. While the Akata Formation is the basal unit composed mainly of marine shales believed to be the main source 108

rock within the basin. The Agbada Formation is made up of alternating sandstone, siltstone, and shale sequences that constitute the petroleum reservoirs of the basin. The Agbada Formation was penetrated in the middle Miocene to late Pliocene sequences of the four wells studied, piercing through the mobile shale, mud diapir and channelized turbidites. Figure 1. Simplified geological map of the study area in the Niger Delta (KEY: A Well A; B Well B; C Well C; D Well D 3. Methodology The materials include soft and paper copies of seismic sections and base map, ditch cutting samples from four wells A, B, C and D and digital well log data. A total of 453 ditch cuttings were analysed for wells A, B, C and D. Eighty-five and 164 ditch cutting samples from the intervals of 4900 9920 ft. and 4530 14600 ft. of wells A and well B respectively, while 92 and 112 samples from the intervals of 5760 11400 ft. and 6000 12750 ft. were analysed for wells C and D respectively. These wells were logged and sampled at 30 ft. intervals and processed for nannofossil analysis using the standard smear slide preparation method. The prepared slides were examined under transmitted light microscope. Detailed identifications (to species level where possible) were made. Fossils were recorded in the analysis sheet with other relevant information. The species name and abundance of each species with depths were used as input data into the Stratabug biostratigraphic software. The data were utilized and integrated in the age dating of critical horizons. From this data set, plots of population abundance and species diversity were made using the prepared checklists. The coincidence of these peaks guided the selection of the candidate maximum flooding surfaces, the positions of which were subsequently confirmed on the log. 4. Discussion of Results Calcareous nannofossils species and abundance have been analysed and interpreted based on the assemblages of diagnostic species and notable biostratigraphic events in the A, B, C and D wells. (Figures 10 13) A total of five zones and two subzones were identified from this study based on the assemblages of diagnostic species and notable nannofossil events namely: Ceratolithus rugosus zone (NN13) (CN10c), Amaurolithus tricorniculatus zone (NN12) (CN10a-CN10b) (duly represented by Amaurolithus delicatus), Discoaster quinqueramus subzone (NN11a) (CN 9b ), Discoaster berggrenii subzone (NN11b) (CN 9a) Discoaster calcaris zone (the missing marker species represented by Discoaster loeblichii) (NN10) (CN 8a-8b), Discoaster hamatus zone (NN9) (CN7a-7b), and Catinaster coalitus zone (NN8) (CN6), (Tables 1 4). The missing marker species might be as a result of dissolution of the skeletal calcite or sedimentation processes. The four wells correlate reasonably, as they show similarities in their nannofossil species (Figures 6 9). It was observed in the correlation of the biozones in the well sections that the wells on the eastern wing of the Charcot fracture zone are down thrown with a drop of about 2,490 ft to 4,350 ft. (830 to 1318 meters) relative to the wells on the western wing of the fractured zone (Figure 9). The biozonation and correlation of the wells A, B, C, and D have helped to subdivide the deep offshore Niger delta Neogene sequence into easily recognizable biostratigraphic units that will enhance prospectively of hydrocarbons. 109

Table 1. Nannofossils biozonation of Well D Table 2. Nannofossils biozonation of Well B 110

Table 3. Nannofossils biozonation of Well A Table 4. Nannofossils biozonation of Well C 111

The relative abundance and short stratigraphic ranges of nannofossils make them an excellent group for the biostratigraphic subdivision of the Mesozoic and Cenozoic strata (Figures 2 6). Their planktic habit and thus relatively rapid dispersal over large areas enhance their usefulness as tools for regional and inter-regional correlations. Zoning and correlation were established in A, B, C, and D wells. The wells were zoned using the standard nannofossil zonation schemes. These are the NN (Neogene Nannofossils) zones of Martini (1971) and the CN (Calcareous Nannofossil) zones of Okada and Bukry (1980). Based on the work of Berggren et al. (1995), absolute ages have been assigned to important bioevents. The zones encountered in this study ranged from the Middle Miocene to the Early Pliocene. Well A lies within the Late Miocene while Wells B, C, and D penetrated strata from Middle Miocene to Early Pliocene age. Catinaster coalitus zone of Middle Miocene represents the NN8 (CN6) zone of Martini (1971), it occurs only in Well C. The Discoaster hamatus zone NN9 (CN7a 7b) occurs across the studied wells representing the Middle/Late Miocene. The occurrence of Discoaster leoblichii and the top occurrence of Discoaster bollii were used to mark the NN10 (CN 8a 8b) zone in place of the zonal marker species, Discoaster calcaris which was missing. Discoaster berggrenii, NN11a (CN9a) subzone and Discoaster quinqueramus NN11b (CN9b) sub zone are the marker species for the Late Miocene. All the above named zones fall within the Middle Miocene to Late Miocene. The last zones encountered in this study are the Amaurolithus tricorniculatus zone, which has been represented by Amaurolithus delicatus in Wells B and C. Ceratolithus rugosus zone was identified in Well C where it has been represented by Ceratolithus acutus. These zones collectively fall within the NN12 and NN13 (CN10c) representing the Early Pliocene. Figure 2. Calcareous nannofossil range chart of Well C 112

Figure 3. Calcareous nannofossil range chart of Well B Figure 4. Calcareous nannofossil range chart of Well D 113

Figure 5. Calcareous nannofossil range chart of Well A WELL C WELL B DEPTH LITHOLOGY MARTINS THIS STUDY CORRELATION LINES THIS STUDY MARTINS LITHOLOGY DEPTH (FT) (1971) (1971) (FT) 5000 6420 6600 8760 9000 9780 9900 10020 10440 NN13 NN12 NN11 NN10 NN9 NN8 Base of C. acutus CD A. delicatus D. quinqueramus D. berggrenii D. loeblichii D. harmatus C. coalitus C A. delicatus D. Quinqueramu s D berggrenii D.loeblichii D. hamatus NN13 NN12 NN11 NN10 NN9 5000 9090 12390 13350 13410 LEGEND missing NN8 14600 SHALE SANDSTONE Figure 6. Correlation of nannofossil zones in C and B wells 114

WELL D WELL B DEPTH LITHOLOGY MARTINS THIS STUDY CORRELATION LINES THIS STUDY MARTINS LITHOLOGY DEPTH (FT) (1971) (1971) (FT) 7000 7260 7440 NN13 NN12 Base of C. rugosus CD MISSING D. quinqueramus C A. delicatus NN13 NN12 5000 9000 9600 9720 11000 NN11 NN10 NN9 D. berggrenii D. loeblichii D. harmatus D. Quinqueramus D berggrenii D.loeblichii NN11 NN10 9090 12390 13350 12000 NN8 Missing D. hamatus NN9 13410 LEGEND Missing NN8 14600 SHALE SANDSTONE Figure 7. Correlation of nannofossil zones in D and B wells WELL C WELL D DEPTH LITHOLOGY MARTINS THIS STUDY CORRELATION LINES THIS STUDY MARTINS LITHOLOGY DEPTH (FT) (1971) (1971) (FT) 5000 6420 6600 8760 9000 9780 NN13 NN12 NN11 NN10 NN9 Base of C. acutus CD A. delicatus D. quinqueramus D. berggrenii D. loeblichii D. harmatus AA C C. rugosus MISSING D. Quinqueramu s D berggrenni NN13 NN12 NN11 NN10 7000 7260 7440 9000 9600 9900 10020 NN8 C. coalitus D. hamatus NN9 9720 10440 11000 LEGEND Missing NN8 12500 SHALE SANDSTONE Figure 8. Correlation of nannofossil zones in C and D wells 115

Figure 9. Correlation of nannofossil zones in C and B wells (Detailed) 116

Figure 10. Nannofossil distribution chart of Well A Figure 11. Nannofossil distribution chart of Well B 117

Figure 12. Nannofossil distribution chart of well C Figure13. Nannofossil distribution chart of Well D 5. Summary and Conclusions The nannofosil species and biozones identified in this study correspond to an almost complete Upper Cenozoic Nannofossil zonation scheme of Martini (1971) and Okada and Bukry (1980). The absence of the marker species (Discoaster calcaris) in the four wells is in agreement with what exists in other previously studied wells in the Niger Delta (Ehinola et al., 2009). In addition, biostratigraphic work from the Gulf of Guinea around the coastal region of the Cote d Ivoire - Ghana margin shows similar reports (Shafik et al., 1998). These workers adopted proxies for the original marker species at the intervals where marker species had rare or sporadic occurrences. A 118

total of Five nannofossil zones (NN13, NN12, NN10, NN9, NN8) and two Nannofossil subzones (NN11a, NN11b) belonging to Middle Miocene to Early Pliocene age were identified from this study based on diagnostic marker species and notable nannofossil events. The zones are Catinaster coalitus zone (NN8), Discoaster hamatus (NN9), Discoaster loeblichi which occupy the base of Discoaster berggrenii and the top of Discoaster bollii was used to identify the NN10 zone, (The main marker for this zone which is Discoaster calcaris). Other zones encountered in this study are Discoaster berggrenii subzone (NN11a), Discoaster quinqueramus subzone (NN11b), Amaurolithus tricorniculatus zone (NN12) and Ceratolithus rugosus zone (NN13). Nannofossil abundance/diversity patterns calibrated with recorded chronostratigraphically important bioevents and correlation with the Global Sea Level Chart of Haq et al. (1987) and Global Cycle Chart of Hardenbol et al. (1998) facilitated the recognition of five Maximum Flooding Surfaces (MFS s) dated 5.0 Ma, 6.0 Ma, 7.4 Ma, 9.5 Ma, and 11.6 Ma, and five Sequence Boundaries (SB s) dated 4.2 Ma, 5.6 Ma, 6.7 Ma, 8.5 Ma and 10.5 Ma. The analyzed sections of the wells are composed of deepwater sediments which were deposited in upper to lower bathyal environments. Acknowledgements Global Energy Limited is acknowledged for the provision of laboratory facilities and the stratabugs software. The studied materials were provided by Shell Nigeria Petroleum Exploration Company (SNEPCo). References Berggren, W. A., Kent, D. V., Flynn, J. J., & Van Couvering, J. J. (1995). Cenozoic Geochronology. Geological Society of American Bulletin, U.S.A., 96, 1406-1418. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156-1167. http://dx.doi.org/10.1126/science.235.4793.1156 Hardenbol, J., Thierry, J., Farley, N. B., Jacquin, T., De Graciansky, P. C., & Vail, P. R. (1998). Mesozoic and Cenozoic Sequence Chronosstratigraphic Framework of European Basins. In P, C. De Graciansky, J. Hardenbol, T. Jacquin, & P. R. Vail (Eds.), Mesozoic and Cenozoic Sequence stratigraphy of European Basins, SEPM Publication 60. Martini, E. (1971). Standard Tertiary and Quarternary calcareous nannoplankton zonation. In A. Farinacci (Ed.), Proceedings of second Planktonic Conference, Roma (1970, Vol, 2, pp. 739-765). Ojo, E. A., Fadiya, L. S., & Ehinola, O. A. (2009). Biozonation and Correlation of BDX-1 and BDX-2 Wells of Deep Offshore Niger Delta Using Calcareous Nannofossils. Search and Discovery Article (AAPG), (50194), 8. Okada, H., & Bukry, D. (1980). Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation. Marine Micropaleontology, 5(2), 321-325. http://dx.doi.org/10.1016/0377-8398(80)90016-x Shafik, S., Watkins, D. K., & Shin, I. C. (1998). Upper Cenozoic Calcareous Nannofossil Biostratigraphy Côte d'ivoire-ghana Margin, Eastern Equatorial Atlantic. 119

PLATE 1 H. sellii 1 2 H. intermedia H. carteri 3 A. amplificus 4 5 D. quinqueramus 8D. quinqueramus 6 A. delicatus 7 A. delicatus D. berggrenii 9 D. berggrenii S. abies S. neoabies 10 11 12 PLATE I Figure 1. Helicosphaera sellii, Jafar and Martini, 1975: Distal side; X2400 2. Helicosphaera intermedia, Martini, 1965: Distal side; X2400 3. Helicosphaera carteri, Theodoridis, 1984: Distal side X2000 4. Amaurolithus amplificus, Gartner and Bukry, 1975: Distal side X2800 5 6. Discoaster. Quinqueramus, Gartner, 1969: Distal side X2800 7 8. Amaurolithus delicatus, Gartner and Bukry, 1975; Distal side X2800 9 10. Ceratolithus rugosus, Gartner, 1969: Distal side X2500 11. Sphenolithus abies, Deflandre and Fert, 1954: Distal side X2000 12. Sphenolithus neoabies, Deflandre and Fert, 1954; Distal side X1800 120

PLATE 2 1 2 3 R. pseudoumbilicus R. minuta R. haqii 4 5 6 Cd. macintyrei Cd. leptoporus Cd. leptoporus P. discopora 7 8 P. multipora 9 S. heteromorphus C. acutus 10 Ct. mexicanus 11 S. moriformis 12 Plate II Figure 1. Reticulofenestra minuta Roth, 1970; Distal side X1800 2. Reticulofenestra haqii Backman, 1978; Distal side: X2400 3. Reticulofenestra pseudoumbilicus, Gartner, 1969; Distal side X2500 4. Calcidiscus macintyrei, Bukry and Bramlette, 1969: Distal side X2000 5 6. Calcidiscus. Leptoporus, Murray and Blackman, 1898; Distal side X2550 7. Pontosphaera discopora, Schiller, 1925: Distal side X2800 8. Pontosphaera multipora (Kamptner. 1948) Roth. 1970; Distal side X2800 9. Sphenolithus heteromorphus, Deflandre, 1953; Distal side X1800 10. Ceratolithus acutus, Jordan and Young, 1990; Distal side X2400 11. Catinaster mexicanus, Bukry, 1971b; Distal side X2000 12. Sphenolithus moriformis Bronnimann and Stradner, 1960; Distal side X2200 121

PLATE 3 1 2 3 D. pentaradiatus D. braarudii D. petaliformis R. Pseudoumbilicus 4 5 D. leobilichii 6 D. leobilichii Ct.coalithus 7 D. bollii D. hamatus 9 8 D. hamatus 10 Co. pelagicus 11 12 C. rugosus Plate III Figure 1. Discoaster braarudii, Bukry, 1971: Distal side X2600 2. Discoaster petaliformis, Moshkovitz and Ehrlich, 1980; Distal side X2400 3. Discoaster pentaradiatus, Tan, 1927; Distal side X2500 4. Reticulofenestra pseudoumbilicus, Gartner, 1969; Distal side X2550 5 6. Discoaster leobilichii, Bukry, 1971a; Distal side X2000 7. Catinaster coalithus, Tan 1927 ; Distal side X 2000 8. Discoaster bollii, Martini and Bramlette, 1963; Distal side X2800 122

9 10. Discoaster hamatus, Martini and Bramlette, 1963; Distal side X2550 11. Coccolithus pelagicus, Schiller,1930; Distal side X2200 12. Discoaster hamatus, Martini and Bramlette, 1963; Distal side X255 Copyrights Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 123