Lecture 22: Final Review

Similar documents
Lecture 1. Introduction

Lecture 5: Asymptotic Equipartition Property

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Lecture 17: Differential Entropy

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

Lecture 3: Channel Capacity

ECE Information theory Final

Homework Set #2 Data Compression, Huffman code and AEP

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion

Solutions to Set #2 Data Compression, Huffman code and AEP

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy

LECTURE 13. Last time: Lecture outline

Lecture 6 I. CHANNEL CODING. X n (m) P Y X

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Chapter 5: Data Compression

(Classical) Information Theory II: Source coding

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

ECE 4400:693 - Information Theory

Lecture 20: Quantization and Rate-Distortion

ELEC546 Review of Information Theory

Information Theory for Wireless Communications. Lecture 10 Discrete Memoryless Multiple Access Channel (DM-MAC): The Converse Theorem

ECE Information theory Final (Fall 2008)

EC2252 COMMUNICATION THEORY UNIT 5 INFORMATION THEORY

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 2: August 31

LECTURE 3. Last time:

lossless, optimal compressor

Lecture 3. Mathematical methods in communication I. REMINDER. A. Convex Set. A set R is a convex set iff, x 1,x 2 R, θ, 0 θ 1, θx 1 + θx 2 R, (1)

Communications Theory and Engineering

The binary entropy function

Capacity of a channel Shannon s second theorem. Information Theory 1/33

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018

EE5585 Data Compression May 2, Lecture 27

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

Lecture 5: Channel Capacity. Copyright G. Caire (Sample Lectures) 122

Lecture 4 Noisy Channel Coding

Exercises with solutions (Set D)

EE 376A: Information Theory Lecture Notes. Prof. Tsachy Weissman TA: Idoia Ochoa, Kedar Tatwawadi

Information Theory and Communication

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73

The Gallager Converse

Lecture Notes on Digital Transmission Source and Channel Coding. José Manuel Bioucas Dias

CS 630 Basic Probability and Information Theory. Tim Campbell

Example: Letter Frequencies


Example: Letter Frequencies

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Principles of Communications

Lecture 14 February 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

Chapter 2: Source coding

National University of Singapore Department of Electrical & Computer Engineering. Examination for

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results

ELEMENTS O F INFORMATION THEORY

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Advanced Topics in Information Theory

Chapter 9 Fundamental Limits in Information Theory

Note that the new channel is noisier than the original two : and H(A I +A2-2A1A2) > H(A2) (why?). min(c,, C2 ) = min(1 - H(a t ), 1 - H(A 2 )).

Entropy as a measure of surprise

Lecture 6: Entropy Rate

Shannon s A Mathematical Theory of Communication

3F1 Information Theory, Lecture 3

Information Theory. David Rosenberg. June 15, New York University. David Rosenberg (New York University) DS-GA 1003 June 15, / 18

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy

Lecture 5 Channel Coding over Continuous Channels

Ch. 8 Math Preliminaries for Lossy Coding. 8.4 Info Theory Revisited

MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK. SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet.

On the Duality between Multiple-Access Codes and Computation Codes

3F1 Information Theory, Lecture 3

Lecture 11: Polar codes construction

Lecture 8: Shannon s Noise Models

Quiz 2 Date: Monday, November 21, 2016

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information.

Dept. of Linguistics, Indiana University Fall 2015

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT V PART-A. 1. What is binary symmetric channel (AUC DEC 2006)

Entropies & Information Theory

EE 4TM4: Digital Communications II. Channel Capacity

Information Theory: Entropy, Markov Chains, and Huffman Coding

Information Theory Primer:

LECTURE 10. Last time: Lecture outline

Lecture 5 - Information theory

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel

X 1 : X Table 1: Y = X X 2

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

ELEMENT OF INFORMATION THEORY

Reliable Computation over Multiple-Access Channels

UCSD ECE 255C Handout #14 Prof. Young-Han Kim Thursday, March 9, Solutions to Homework Set #5

Lecture 4 Channel Coding

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

Shannon s Noisy-Channel Coding Theorem

Transcription:

Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University

Basics Dr Yao Xie, ECE587, Information Theory, Duke University 1

Nuts and bolts Entropy: H(X) = p(x) log 2 p(x) (bits) x H(X) = f(x) log f(x)dx (bits) Conditional entropy: H(X Y ), joint entropy: H(X, Y ) Mutual information: reduction in uncertainty due to another random variable I(X; Y ) = H(X) H(X Y ) Relative entropy: D(p q) = x p(x) log p(x) q(x) Dr Yao Xie, ECE587, Information Theory, Duke University 2

For stochastic processes: entropy rate H(X ) = lim n = ij H(X n ) n = lim n H(X n X n 1,, X 1 ) µ i P ij log P ij for 1st order Markov chain 567896(!"#$%&'( 3*&00:,(!"#$%&'(( )*+,(-(( %/01023*&004,(( ;4#47(<"=%$>78%"( ( <*+?(@,(-()*+,(2()*+0@,( ( <*+?(@,(-(3*&*AB(',00&*A,&*',,( Dr Yao Xie, ECE587, Information Theory, Duke University 3

H(X,Y) H(X Y ) I(X;Y) H(Y X ) H(X ) H(Y ) Dr Yao Xie, ECE587, Information Theory, Duke University 4

Thou Shalt Know (In)equalities Chain rules: H(X, Y ) = H(X) + H(Y X), H(X 1, X 2,, X n ) = n i=1 H(X i X i 1,, X 1 ) I(X 1, X 2,, X n ; Y ) = n i=1 I(X i; Y X i 1,, X 1 ) Jensen s inequality: if f is a convex function, Ef(X) f(ex) Conditioning reduces entropy: H(X Y ) H(X) H(X) 0 (but differential entropy can be < 0), I(X; Y ) 0 (for both discrete and continuous) Dr Yao Xie, ECE587, Information Theory, Duke University 5

Data processing inequality: X Y Z I(X; Z) I(X; Y ) I(X; Z) I(Y ; Z) Fano s inequality: P e H(X Y ) 1 log X Dr Yao Xie, ECE587, Information Theory, Duke University 6

Fundamental Questions and Limits Dr Yao Xie, ECE587, Information Theory, Duke University 7

Fundamental questions Physical Channel Source Encoder Transmitter Receiver Decoder Data compression limit (lossless source coding) Data transmission limit (channel capacity) Tradeoff between rate and distortion (lossy compression) Dr Yao Xie, ECE587, Information Theory, Duke University 8

Codebook /0+1'+"#$,"-#'' 10'#23$)2")')'!"#$%""&' ( )* '+"#$,"-#' Dr Yao Xie, ECE587, Information Theory, Duke University 9

Fundamental limits Data compression limit Data transmission limit ^ min l(x; X ) max l(x; Y ) Lossless compression: I(X; ˆX) = H(X) H(X ˆX) H(X ˆX) = 0, I(X; ˆX) = H(X) Data compression limit: x l(x)p(x) H(X) Dr Yao Xie, ECE587, Information Theory, Duke University 10

instantaneous code: m i=1 D l i 1 optimal code length: l i = log D p i 0 Root 10 110 111 Dr Yao Xie, ECE587, Information Theory, Duke University 11

Data compression limit Data transmission limit ^ min l(x; X ) max l(x; Y ) Channel capacity: given fixed channel with transition probability p(y x) C = max p(x) I(X; Y ) Dr Yao Xie, ECE587, Information Theory, Duke University 12

BSC: C = 1 H(p), Erasure: C = 1 α Gaussian channel: C = 1 2 log(1 + P N ) water-filling Power n P 1 P 2 N 3 N 1 N 2 Channel 1 Channel 2 Channel 3 Dr Yao Xie, ECE587, Information Theory, Duke University 13

!" % & '() "!*" % & '() "!!" $" #" Dr Yao Xie, ECE587, Information Theory, Duke University 14

Data compression limit Data transmission limit ^ min l(x; X ) max l(x; Y ) Rate-distortion: given source with distribution p(x) R(D) = min p(x ˆx): p(x)p(ˆx x)d(x,ˆx) D I(X; ˆX) compute R(D): construct test channel Dr Yao Xie, ECE587, Information Theory, Duke University 15

Bernoulli source: R(D) = (H(p) H(D)) + Gaussian source: R(D) = ( 1 2 ) + σ2 log D Dr Yao Xie, ECE587, Information Theory, Duke University 16

Tools Dr Yao Xie, ECE587, Information Theory, Duke University 17

Tools: from probability Law of Large Number (LLN): If x n independent and identically distributed, 1 N x n E{X}, wp1 N n=1 Variance: σ 2 = E{(X µ) 2 } = E{X 2 } µ 2 Central Limit Theorem (CLT): 1 Nσ 2 N (x n µ) N (0, 1) n=1 Dr Yao Xie, ECE587, Information Theory, Duke University 18

Tools: AEP LLN for product of iid random variables n n i=1 E(log X) X i e AEP 1 n log 1 p(x 1, X 2,, X n ) H(X) p(x 1, X 2,, X n ) 2 nh(x) Divide all sequences in X n into two sets Dr Yao Xie, ECE587, Information Theory, Duke University 19

Typicality n : n elements Non-typical set Typical set A (n) : 2 n(h + ) elements Dr Yao Xie, ECE587, Information Theory, Duke University 20

Joint typicality x n y n X n Y n Dr Yao Xie, ECE587, Information Theory, Duke University 21

Tools: Maximum entropy Discrete: H(X) log X, equality when X has uniform distribution Continuous: H(X) 1 2 log(2πe)n K, EX 2 = K equality when X N (0, K) Dr Yao Xie, ECE587, Information Theory, Duke University 22

Practical Algorithms Dr Yao Xie, ECE587, Information Theory, Duke University 23

Practical algorithms: source coding Huffman, Shannon-Fano-Elias, Arithmetic code Codeword Length Codeword X Probability 2 01 1 025 03 045 055 1 2 10 2 025 025 03 045 2 11 3 02 025 025 3 000 4 015 02 3 001 5 015 Dr Yao Xie, ECE587, Information Theory, Duke University 24

Practical algorithms: channel coding!"#$%&'()*+,'' +*-$' *#/*)01*#%)' +*-$' 2%33"#4' +*-$' 80&(*' 5$$-6 7*)*3*#'!9:'?2' :*)%&' ;'<=%&1%)>'-"%4&%3' Dr Yao Xie, ECE587, Information Theory, Duke University 25

Practical algorithms: decoding Viterbi algorithm Dr Yao Xie, ECE587, Information Theory, Duke University 26

What are some future topics Dr Yao Xie, ECE587, Information Theory, Duke University 27

Distributed lossless coding Consider the two iid sources (U, V ) p(u, v) U n Encoder 1 I Decoder (Ûn, ˆV n ) V n Encoder 2 J R + R H(U,V ) R 2 H(V ) H(V U) H(U V )H(U) R 1 Dr Yao Xie, ECE587, Information Theory, Duke University 28

Multi-user information theory Dr Yao Xie, ECE587, Information Theory, Duke University 29

Multiple access channel W 1 Encoder 1 X n 1 p(y x 1, x 2 ) Y n Decoder (Ŵ 1, Ŵ 2 ) W 2 Encoder 2 X n 2 R 2 I(X 2 ; Y X 1 ) I(X 2 ; Y ) I(X 1 ; Y ) I(X 1 ; Y X 2 ) R 1 [1,2]: The capacity region for the DM-MAC is the Dr Yao Xie, ECE587, Information Theory, Duke University 30

Statistics Large deviation theory Stein s lemma Dr Yao Xie, ECE587, Information Theory, Duke University 31

One last thing Make things as simple as possible, but not simpler A Einstein Dr Yao Xie, ECE587, Information Theory, Duke University 32