Where Probability Meets Combinatorics and Statistical Mechanics

Similar documents
Cluster and virial expansions for multi-species models

Decay of correlations in 2d quantum systems

Multi-species virial expansions

Lattice Permutations and Poisson-Dirichlet Distribution of Cycle Lengths

VIGRE APPLICATION PART II SUMMER AND FALL 2009

Critical behavior for the model of random spatial permutations

Nematic phase of spin 1 quantum systems

Markov chain Monte Carlo methods and random spatial permutations

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016

arxiv: v3 [cond-mat.stat-mech] 17 Oct 2017

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Why Hyperbolic Symmetry?

Finite Temperature Field Theory

High temperature regime in spatial random permutations. Lorenzo Taggi, TU Darmstadt (Joint work with Volker Betz, TU Darmstadt)

Decay of Correlations in 2D Quantum Systems with Continuous Symmetry

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

CHAPTER 4. Cluster expansions

Antiferromagnetic Potts models and random colorings

Thermodynamic limit for a system of interacting fermions in a random medium. Pieces one-dimensional model

Some Correlation Inequalities for Ising Antiferromagnets

The Mermin-Wagner Theorem

Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Cluster Expansion in the Canonical Ensemble

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Time Evolving Block Decimation Algorithm

Metastability for the Ising model on a random graph

Monte Carlo methods for sampling-based Stochastic Optimization

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Introduction to Machine Learning CMU-10701

Geometry, topology and frustration: the physics of spin ice

Notes on Spin Operators and the Heisenberg Model. Physics : Winter, David G. Stroud

Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

Metropolis Monte Carlo simulation of the Ising Model

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Renormalization group analysis for the 3D XY model. Francesca Pietracaprina

The Quantum Adiabatic Algorithm

Quantum annealing by ferromagnetic interaction with the mean-field scheme

Equilibrium, out of equilibrium and consequences

Phase transitions for particles in R 3

Gradient interfaces with and without disorder

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

Activated Dynamics of the Cascading 2-GREM Scaling limits & Aging

THE POISSON DIRICHLET DISTRIBUTION AND ITS RELATIVES REVISITED

Quantum Monte Carlo Simulations in the Valence Bond Basis

Adiabatic times for Markov chains and applications

Broken Z 2 symmetries and fluctuations in statistical mechanics

Statistical Mechanics and Combinatorics : Lecture I

STATIONARY NON EQULIBRIUM STATES F STATES FROM A MICROSCOPIC AND A MACROSCOPIC POINT OF VIEW

Advanced Computation for Complex Materials

Typical quantum states at finite temperature

Convex Optimization CMU-10725

Phase Transitions in a Wide Class of One- Dimensional Models with Unique Ground States

Properties of the boundary rg flow

Ground State Projector QMC in the valence-bond basis

String / gauge theory duality and ferromagnetic spin chains

From unitary dynamics to statistical mechanics in isolated quantum systems

On the mean Euler characteristic and mean Betti numbers of the Griffiths model

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC

Magnetic ordering of local moments

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs

QFT at finite Temperature

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

INTRODUCTION TO STATISTICAL MECHANICS Exercises

The Random Matching Problem

Hopping transport in disordered solids

Quantum Mechanics on Heisenberg group. Ovidiu Calin Der-Chen Chang Peter Greiner

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday).

Phase transitions and coarse graining for a system of particles in the continuum

Slightly off-equilibrium dynamics

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

Markov Chains and MCMC

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

( ) Lectures on Hydrodynamics ( ) =Λ Λ = T x T R TR. Jean-Yve. We can always diagonalize point by point. by a Lorentz transformation

Classical Statistical Mechanics: Part 1

Local time path integrals and their application to Lévy random walks

Polynomial-time classical simulation of quantum ferromagnets

4 4 and perturbation theory

Spectral asymptotics for stable trees and the critical random graph

VI.D Self Duality in the Two Dimensional Ising Model

Introduction to the Renormalization Group

Luigi Paolasini

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Improved diffusion Monte Carlo

A STUDY ON CONDENSATION IN ZERO RANGE PROCESSES

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Dedicated to Herbert Spohn on the occasion of his 65th birthday

On Markov Chain Monte Carlo

Corrections. ir j r mod n 2 ). (i r j r ) mod n should be d. p. 83, l. 2 [p. 80, l. 5]: d. p. 92, l. 1 [p. 87, l. 2]: Λ Z d should be Λ Z d.

Billiard ball model for structure factor in 1-D Heisenberg anti-ferromagnets

Connected spatial correlation functions and the order parameter of the 3D Ising spin glass

Fast Numerical Methods for Stochastic Computations

Quantum Monte Carlo simulation of spin-polarized tritium

Introduction to Quantum Monte Carlo

where β = 1, H = H µn (3.3) If the Hamiltonian has no explicit time dependence, the Greens functions are homogeneous in time:

The Last Survivor: a Spin Glass Phase in an External Magnetic Field.

Transcription:

Where Probability Meets Combinatorics and Statistical Mechanics Daniel Ueltschi Department of Mathematics, University of Warwick MASDOC, 15 March 2011 Collaboration with V. Betz, N.M. Ercolani, C. Goldschmidt, S. Tate, Y. Velenik, P. Windridge D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 1 / 13

Random permutations... with cycle weights with spatial structure We are looking for the distribution of long cycles! D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 2 / 13

Random permutations with cycle weights Random object: permutation π S n P n (π) = 1 Z n j 1 θ R j(π) j where R j (π) is the number of j-cycles in the permutation π Properties depend on parameters θ j. Results so far (obtained with Betz, Ercolani, Velenik): Parameters Typical cycle lengths Number of cycles Finite cycles θ n = e nγ, γ > 1 P n(l 1 = n) 1 K 1 R j 0 θ n e nγ, 0 < γ < 1 L 1 /( 1 1 γ log n)1/γ 1 R j Poisson` θ j j θ n n γ 1, γ > 0 L 1 /n γ+1 1 Gamma`γ +1, Γ(γ +1) γ+1 γ E n(k) An γ+1 R j Poisson` θ j j θ n θ L 1 /n Beta(1, θ) E n(k) θ log n R j Poisson` θ j j θ n = n γ, γ > 0, or θ n = e nγ L 1 /n 1 K 1 + Poisson( P θ j j, 0 < γ < 1 ) R j Poisson` θ j j γ 1 γ θ n = e nγ, γ > 1 L 1 /` 1 γ 1 log n 1/γ 1 En(R j ) exp jγ` log n γ 1 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 3 / 13

Methods: Mix of probability & combinatorics Probability distribution of cycle that contains index 1 : P n (L 1 = j) = θ jz n j nz n Use theory of combinatorial structures to get expression for generating function of Z n Saddle point method to get Z n Project 1. More regimes to be studied, e.g. θ n n log n. Aim for more precise results! Theory of combinatorial structures also useful in the study of cluster expansions of statistical mechanics (work in progress with S. Tate) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 4 / 13

Motivation to spatial permutations: quantum Bose gas N bosons in Λ R d State space L 2 sym(λ N ) Hamiltonian operator N H = U(x i x j ) i=1 i + i<j Feynman-Kac formula for Z = Tr e βh : with x = (x 1,..., x N ), Z = dx Λ N π S N e H(x,π) x with Hamiltonian 1 β π (1) H : Λ N S N R (Explicit expression for H in terms of Wiener trajectories) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 5 / 13

Lattice permutations Random objects: permutations of Λ Z d (i.e. bijections Λ Λ ) P(π) = 1 Z(Λ) exp { 1 4β x π(x) 2} x Λ Mean jump length β Expected: critical value β c, with long cycles iff β > β c Project 2. Numerical simulations. Once they work, there are many questions to be investigated! D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 6 / 13

Monte Carlo simulations (dimension d = 2 ) Step 0 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step 1 Step 1 Step 1 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step 2 Step 2 Step 2 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step 3 Step 3 Step 3 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step 4 Step 4 Step 4 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step 5 Step 5 Step 5 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step 10 Step 10 Step 10 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step 30 Step 30 Step 30 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step 100 Step 100 Step 100 (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Monte Carlo simulations (dimension d = 2 ) Step " Step " Step (Courtesy of Daniel Gandolfo and Jean Ruiz, CNRS, Marseille) temperature! = 0.75 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 7 / 13

Spatial permutations ( annealed ) State space: Ω Λ,N = Λ N S N Gibbs weight e H(x,π) Expectation of random variable Θ : E Λ,N (Θ) = 1 dx Θ(x, π) e H(x,π) Z Λ N π General Hamiltonian: H(x, π) = N ξ(x i x π(i) ) + α j R j (π) i=1 j 1 with α j : parameters, and R j (π) : number of cycles of length j Bose gas: ξ(x) = 1 4β x 2 D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 8 / 13

Main results (with V. Betz) Fraction of points in cycles: ν = lim K lim Λ,N E ( 1 N We suppose that ξ(x) = ξ( x ), e ξ = 1, ê ξ 0 i:l (i) >K Theorem 1. If α j α, there exists ρ c such that ( ) (a) ν = max 0, ρ ρc ρ ( ) (b) When ν > 0 : L (1) νn, L(2) νn,... Poisson-Dirichlet( e α ) L (i)) Theorem 2. If α j = γ log j with γ > 0, there exists ρ c such that ( ) (a) ν = max 0, ρ ρc ρ (b) When ν > 0, L(1) νn 1 Project 3. Extend results to more functions ξ, more weights α j! D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 9 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

Graph (Λ, E). Most relevant: Λ a box in Z 3 Poisson process on edges ρ β (dω) Next: define cycle and loop configurations D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 10 / 13

.. D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles. D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles. D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles. D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles. D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles. D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles. D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles. D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles loops A B A B A B A D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles loops A B A B A B A D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles loops A B A B A B A D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

cycles loops A B A B A B A D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 11 / 13

These are stochastic representations of Heisenberg models of quantum spins Ferromagnetic model: add weight 2 #cycles Antiferromagnetic model: add weight 2 #loops Goal: Show that cycle (loop) lengths are distributed according to Poisson-Dirichlet law Method: Introduce stochastic process such that (i) equilibrium measure is invariant; (ii) effective coagulation-fragmentation process; (iii) Poisson-Dirichlet is invariant measure for the latter Work in progress with C. Goldschmidt & P. Windridge Project 4. Analytical or numerical work in support of these ideas D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 12 / 13

Conclusion The goal is to better understand the distribution of cycle lengths in Random permutations with cycle weights D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 13 / 13

Conclusion The goal is to better understand the distribution of cycle lengths in Random permutations with cycle weights Random permutations with spatial structure D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 13 / 13

Conclusion The goal is to better understand the distribution of cycle lengths in Random permutations with cycle weights Random permutations with spatial structure Cycle and loop models D. Ueltschi (Warwick) Prob., Comb., Stat. Mech. MASDOC 15 Mar 2011 13 / 13