Prerequisites. Introduction CHAPTER OUTLINE

Similar documents
Prerequisites. Introduction CHAPTER OUTLINE

Prerequisites. Introduction CHAPTER OUTLINE

LESSON 9.1 ROOTS AND RADICALS

Introductory Algebra Chapter 9 Review

NOTES: Chapter 11. Radicals & Radical Equations. Algebra 1B COLYER Fall Student Name:

Equations and Inequalities. College Algebra

Chapter 8 RADICAL EXPRESSIONS AND EQUATIONS

10.1. Square Roots and Square- Root Functions 2/20/2018. Exponents and Radicals. Radical Expressions and Functions

Intermediate Algebra

Lesson 9: Radicals and Conjugates

NAME DATE PERIOD. A negative exponent is the result of repeated division. Extending the pattern below shows that 4 1 = 1 4 or 1. Example: 6 4 = 1 6 4

Equations and Inequalities

Working with Square Roots. Return to Table of Contents

Irrational Numbers Study Guide

Lesson 2. When the exponent is a positive integer, exponential notation is a concise way of writing the product of repeated factors.

Developed in Consultation with Virginia Educators

Extending the Number System

Big Ideas: determine an approximate value of a radical expression using a variety of methods. REVIEW Radicals

JUST THE MATHS UNIT NUMBER 1.3. ALGEBRA 3 (Indices and radicals (or surds)) A.J.Hobson

Radical Expressions, Equations, and Functions

First Quarter Second Quarter Third Quarter Fourth Quarter Unit 1: Expressions and Operations 2.5 weeks/6 blocks

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n

27 = 3 Example: 1 = 1

Skill: determine an approximate value of a radical expression using a variety of methods.

2.2 Radical Expressions I

Course Outcome Summary

Radical Expressions and Graphs 8.1 Find roots of numbers. squaring square Objectives root cube roots fourth roots

Chapter 2. Real Numbers and Monomials. 8/2016 LSowatsky 1

Simplifying Radical Expressions

Unit Essential Questions. What are the different representations of exponents? Where do exponents fit into the real number system?

Study Guide for Math 095

Radical Expressions and Functions What is a square root of 25? How many square roots does 25 have? Do the following square roots exist?

Topic 16 - Radicals. 1. Definition of a Radicals

Intermediate Algebra with Applications

6-5 Study Guide and Intervention

Common Core Algebra 2. Chapter 5: Rational Exponents & Radical Functions

Mini Lecture 9.1 Finding Roots

Summary for a n = b b number of real roots when n is even number of real roots when n is odd

MATH 1111 Section P.1 Bland. Algebraic Expressions - An algebraic expression is a combination of variables and numbers using operations.

SECTION 1.4 PolyNomiAls feet. Figure 1. A = s 2 = (2x) 2 = 4x 2 A = 2 (2x) 3 _ 2 = 1 _ = 3 _. A = lw = x 1. = x

Note: In this section, the "undoing" or "reversing" of the squaring process will be introduced. What are the square roots of 16?

ALGEBRA I CURRICULUM OUTLINE

Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet

Prerequisites. Introduction CHAPTER OUTLINE

Beginning Algebra. 1. Review of Pre-Algebra 1.1 Review of Integers 1.2 Review of Fractions

Section 10.1 Radical Expressions and Functions. f1-152 = = = 236 = 6. 2x 2-14x + 49 = 21x = ƒ x - 7 ƒ

Course Text. Course Description. Course Objectives. Course Prerequisites. Important Terms. StraighterLine Introductory Algebra

7.5 Rationalizing Denominators and Numerators of Radical Expressions

Chapter 3: Factors, Roots, and Powers

SECTION Types of Real Numbers The natural numbers, positive integers, or counting numbers, are

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize).

Chapter 1.6. Perform Operations with Complex Numbers

Geometry A & Geometry B & Honors Geometry Summer Packet

Fundamentals. Copyright Cengage Learning. All rights reserved.

Radical Equations and Inequalities

nonadjacent angles that lie on opposite sides of the transversal and between the other two lines.

Equations. Rational Equations. Example. 2 x. a b c 2a. Examine each denominator to find values that would cause the denominator to equal zero

Classify, graph, and compare real numbers. Find and estimate square roots Identify and apply properties of real numbers.

Elementary Algebra

Chapter 4: Radicals and Complex Numbers

( )( ) Algebra I / Technical Algebra. (This can be read: given n elements, choose r, 5! 5 4 3! ! ( 5 3 )! 3!(2) 2

Prerequisite: Qualification by assessment process or completion of Mathematics 1050 or one year of high school algebra with a grade of "C" or higher.

NFC ACADEMY COURSE OVERVIEW

Mathematics GRADE 8 Teacher Packet

SEVENTH EDITION and EXPANDED SEVENTH EDITION

Never leave a NEGATIVE EXPONENT or a ZERO EXPONENT in an answer in simplest form!!!!!

Algebra I Unit Report Summary

MA094 Part 2 - Beginning Algebra Summary

Part 2 - Beginning Algebra Summary

UNIT 4: RATIONAL AND RADICAL EXPRESSIONS. 4.1 Product Rule. Objective. Vocabulary. o Scientific Notation. o Base

Equations and Inequalities

12.2 Simplifying Radical Expressions

Course Name: MAT 135 Spring 2017 Master Course Code: N/A. ALEKS Course: Intermediate Algebra Instructor: Master Templates

Math Lecture 23 Notes

Natural Numbers Positive Integers. Rational Numbers

MATH Spring 2010 Topics per Section

Accessible Topic - Topics accessible to visually impaired students using a screen reader.

Chapter 7 Rational Expressions, Equations, and Functions

Geometry Summer Assignment

HONORS GEOMETRY Summer Skills Set

Simplifying Radicals. multiplication and division properties of square roots. Property Multiplication Property of Square Roots

Notice that we are switching from the subtraction to adding the negative of the following term

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS:

ACCUPLACER MATH 0311 OR MATH 0120

5.1 Monomials. Algebra 2

P.1: Algebraic Expressions, Mathematical Models, and Real Numbers

Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I

Prep for College Algebra with Trigonometry

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers

Algebra II Summer Packet. Summer Name:

4.1 Estimating Roots Name: Date: Goal: to explore decimal representations of different roots of numbers. Main Ideas:

REVIEW SHEETS ELEMENTARY ALGEBRA MATH 65

Answers (Lesson 11-1)

CHAPTER EIGHT: SOLVING QUADRATIC EQUATIONS Review April 9 Test April 17 The most important equations at this level of mathematics are quadratic

Chapter 9. Worked-Out Solutions. Check. Chapter 9 Maintaining Mathematical Proficiency (p. 477) y = 2 x 2. y = 1. = (x + 5) 2 4 =?

5.1 Multiplying and Dividing Radical Expressions

Ohio s Learning Standards-Extended. Mathematics. The Real Number System Complexity a Complexity b Complexity c

Unit 6 Part 2 Quadratic Functions 2/28/2017 3/22/2017

The first two give solutions x = 0 (multiplicity 2), and x = 3. The third requires the quadratic formula:

Solving Quadratic Equations Review

Transcription:

Prerequisites 1 Figure 1 Credit: Andreas Kambanls CHAPTER OUTLINE 1.1 Real Numbers: Algebra Essentials 1.2 Exponents and Scientific Notation 1. Radicals and Rational Expressions 1. Polynomials 1. Factoring Polynomials 1.6 Rational Expressions Introduction It s a cold day in Antarctica. In fact, it s always a cold day in Antarctica. Earth s southernmost continent, Antarctica experiences the coldest, driest, and windiest conditions known. The coldest temperature ever recorded, over one hundred degrees below zero on the Celsius scale, was recorded by remote satellite. It is no surprise then, that no native human population can survive the harsh conditions. Only explorers and scientists brave the environment for any length of time. Measuring and recording the characteristics of weather conditions in Antarctica requires a use of different kinds of numbers. Calculating with them and using them to make predictions requires an understanding of relationships among numbers. In this chapter, we will review sets of numbers and properties of operations used to manipulate numbers. This understanding will serve as prerequisite knowledge throughout our study of algebra and trigonometry. 1

SECTION 1. Radicals ANd rational expressions 1 LEARNING OBJECTIVES In this section, you will: Evaluate square roots. Use the product rule to simplify square roots. Use the quotient rule to simplify square roots. Add and subtract square roots. Rationalize denominators. Use rational roots. 1. RADICALS AND RATIONAL EXPRESSIONS A hardware store sells 16-ft ladders and 2-ft ladders. A window is located 12 feet above the ground. A ladder needs to be purchased that will reach the window from a point on the ground feet from the building. To find out the length of ladder needed, we can draw a right triangle as shown in Figure 1, and use the Pythagorean Theorem. 12 feet c Figure 1 a 2 + b 2 = c 2 2 + 12 2 = c 2 169 = c 2 Now, we need to find out the length that, when squared, is 169, to determine which ladder to choose. In other words, we need to find a square root. In this section, we will investigate methods of finding solutions to problems such as this one. Evaluating Square Roots When the square root of a number is squared, the result is the original number. Since 2 = 16, the square root of 16 is. The square root function is the inverse of the squaring function just as subtraction is the inverse of addition. To undo squaring, we take the square root. In general terms, if a is a positive real number, then the square root of a is a number that, when multiplied by itself, gives a. The square root could be positive or negative because multiplying two negative numbers gives a positive number. The principal square root is the nonnegative number that when multiplied by itself equals a. The square root obtained using a calculator is the principal square root. The principal square root of a is written as a. The symbol is called a radical, the term under the symbol is called the radicand, and the entire expression is called a radical expression. feet Radical 2 Radicand Radical expression principal square root The principal square root of a is the nonnegative number that, when multiplied by itself, equals a. It is written as a radical expression, with a symbol called a radical over the term called the radicand: a.

2 CHAPTER 1 Prerequisites Q & A Does 2 = ±? No. Although both 2 and ( ) 2 are 2, the radical symbol implies only a nonnegative root, the principal square root. The principal square root of 2 is 2 =. Example 1 Evaluating Square Roots Evaluate each expression. a. 100 b. 16 c. 2 + 1 d. 9 81 a. 100 = 10 because 10 2 = 100 Q & A b. 16 = = 2 because 2 = 16 and 2 2 = c. 2 + 1 = 169 = 1 because 1 2 = 169 d. 9 81 = 7 9 = 2 because 7 2 = 9 and 9 2 = 81 For 2 + 1, can we find the square roots before adding? No. 2 + 1 = + 12 = 17. This is not equivalent to 2 + 1 = 1. The order of operations requires us to add the terms in the radicand before finding the square root. Try It #1 a. 22 b. 81 c. 2 9 d. 6 + 121 Using the Product Rule to Simplify Square Roots To simplify a square root, we rewrite it such that there are no perfect squares in the radicand. There are several properties of square roots that allow us to simplify complicated radical expressions. The first rule we will look at is the product rule for simplifying square roots, which allows us to separate the square root of a product of two numbers into the product of two separate rational expressions. For instance, we can rewrite 1 as. We can also use the product rule to express the product of multiple radical expressions as a single radical expression. the product rule for simplifying square roots If a and b are nonnegative, the square root of the product ab is equal to the product of the square roots of a and b. ab = a b Given a square root radical expression, use the product rule to simplify it. 1. Factor any perfect squares from the radicand. 2. Write the radical expression as a product of radical expressions.. Simplify. Example 2 Using the Product Rule to Simplify Square Roots Simplify the radical expression. a. 00 b. 162a b a. 100 Factor perfect square from radicand. 100 10 Write radical expression as product of radical expressions. Simplify.

SECTION 1. Radicals ANd rational expressions Try It #2 b. 81a b 2a Factor perfect square from radicand. 81a b 2a 9a 2 b 2 2a Simplify 0x 2 y z. Write radical expression as product of radical expressions. Simplify. Given the product of multiple radical expressions, use the product rule to combine them into one radical expression. 1. Express the product of multiple radical expressions as a single radical expression. 2. Simplify. Example Simplify the radical expression. Try It # Using the Product Rule to Simplify the Product of Multiple Square Roots 12 6 Simplify. Simplify 0x 2x assuming x > 0. 6 12 Using the Quotient Rule to Simplify Square Roots Express the product as a single radical expression. Just as we can rewrite the square root of a product as a product of square roots, so too can we rewrite the square root of a quotient as a quotient of square roots, using the quotient rule for simplifying square roots. It can be helpful to separate the numerator and denominator of a fraction under a radical so that we can take their square roots separately. We can rewrite 2 as 2. the quotient rule for simplifying square roots a The square root of the quotient _ is equal to the quotient of the square roots of a and b, where b 0. b a b = a b Given a radical expression, use the quotient rule to simplify it. 1. Write the radical expression as the quotient of two radical expression. 2. Simplify the numerator and denominator. Example Using the Quotient Rule to Simplify Square Roots Simplify the radical expression. 6 _ 6 Write as quotient of two radical expressions. Simplify denominator. 6

CHAPTER 1 Prerequisites Try It # Simplify 2x 2 9y. Example Using the Quotient Rule to Simplify an Expression with Two Square Roots 2x Simplify the radical expression. _ 11 y 26x 7 y 2x 11 y 26x 7 y Combine numerator and denominator into one radical expression. 9x Simplify fraction. x 2 Simplify square root. Try It # Simplify 9a b 1 a b. Adding and Subtracting Square Roots We can add or subtract radical expressions only when they have the same radicand and when they have the same radical type such as square roots. For example, the sum of 2 and 2 is 2. However, it is often possible to simplify radical expressions, and that may change the radicand. The radical expression 18 can be written with a 2 in the radicand, as 2, so 2 + 18 = 2 + 2 = 2. Given a radical expression requiring addition or subtraction of square roots, solve. 1. Simplify each radical expression. 2. Add or subtract expressions with equal radicands. Example 6 Adding Square Roots Add 12 + 2. We can rewrite 12 as. According the product rule, this becomes. The square root of is 2, so the expression becomes (2), which is 10. Now the terms have the same radicand so we can add. 10 + 2 = 12 Try It #6 Add + 6 20. Example 7 Subtracting Square Roots Subtract 20 72a b c 1 8a b c.

SECTION 1. Radicals ANd rational expressions Rewrite each term so they have equal radicands. Now the terms have the same radicand so we can subtract. Try It #7 Subtract 80x x. Rationalizing Denominators 20 72a b c = 20 9 2 a a 2 (b 2 ) 2 c = 20()(2) a b 2 2ac = 120 a b 2 2ac 1 8a b c = 1 2 a a 2 (b 2 ) 2 c = 1(2) a b 2 2ac = 28 a b 2 2ac 120 a b 2 2ac 28 a b 2 2ac = 92 a b 2 2ac When an expression involving square root radicals is written in simplest form, it will not contain a radical in the denominator. We can remove radicals from the denominators of fractions using a process called rationalizing the denominator. We know that multiplying by 1 does not change the value of an expression. We use this property of multiplication to change expressions that contain radicals in the denominator. To remove radicals from the denominators of fractions, multiply by the form of 1 that will eliminate the radical. For a denominator containing a single term, multiply by the radical in the denominator over itself. In other words, if the denominator is b c, multiply by c c. For a denominator containing the sum of a rational and an irrational term, multiply the numerator and denominator by the conjugate of the denominator, which is found by changing the sign of the radical portion of the denominator. If the denominator is a + b c, then the conjugate is a b c. Given an expression with a single square root radical term in the denominator, rationalize the denominator. 1. Multiply the numerator and denominator by the radical in the denominator. 2. Simplify. Example 8 Rationalizing a Denominator Containing a Single Term 2 Write in simplest form. 10 The radical in the denominator is 10. So multiply the fraction by _ 10. Then simplify. 10 2 10 _ 10 10 2 0 0 _ 0 1

6 CHAPTER 1 Prerequisites Try It #8 Write 12 in simplest form. 2 Given an expression with a radical term and a constant in the denominator, rationalize the denominator. 1. Find the conjugate of the denominator. 2. Multiply the numerator and denominator by the conjugate.. Use the distributive property.. Simplify. Example 9 Write in simplest form. 1 + Rationalizing a Denominator Containing Two Terms Begin by finding the conjugate of the denominator by writing the denominator and changing the sign. So the conjugate of 1 + is 1. Then multiply the fraction by 1 1. 1 + 1 1 1 Use the distributive property. Simplify. Try It #9 Write 7 in simplest form. 2 + Using Rational Roots Although square roots are the most common rational roots, we can also find cuberoots, th roots, th roots, and more. Just as the square root function is the inverse of the squaring function, these roots are the inverse of their respective power functions. These functions can be useful when we need to determine the number that, when raised to a certain power, gives a certain number. Understanding nth Roots Suppose we know that a = 8. We want to find what number raised to the rd power is equal to 8. Since 2 = 8, we say that 2 is the cube root of 8. The nth root of a is a number that, when raised to the nth power, gives a. For example, is the th root of 2 because ( ) = 2. If a is a real number with at least one nth root, then the principal nth root of a is the number with the same sign as a that, when raised to the nth power, equals a. The principal nth root of a is written as n a, where n is a positive integer greater than or equal to 2. In the radical expression, n is called the index of the radical. principal nth root If a is a real number with at least one nth root, then the principal nth root of a, written as n a, is the number with the same sign as a that, when raised to the nth power, equals a. The index of the radical is n.

SECTION 1. Radicals ANd rational expressions 7 Example 10 Simplifying n th Roots Simplify each of the following: a. 2 b. 1, 02 c. a. 2 = 2 because ( 2) = 2 8x 6 12 d. 8 8 b. First, express the product as a single radical expression.,096 = 8 because 8 =,096 c. 8x 6 12 Write as quotient of two radical expressions. _ 2x 2 Simplify. d. 8 2 6 Simplify to get equal radicands. Add. Try It #10 Simplify. a. 216 b. 80 c. 6 9,000 + 7 76 Using Rational Exponents Radical expressions can also be written without using the radical symbol. We can use rational (fractional) exponents. The index must be a positive integer. If the index n is even, then a cannot be negative. a _n 1 = We can also have rational exponents with numerators other than 1. In these cases, the exponent must be a fraction in lowest terms. We raise the base to a power and take an nth root. The numerator tells us the power and the denominator tells us the root. a _n m n = a m n = a m All of the properties of exponents that we learned for integer exponents also hold for rational exponents. n a rational exponents Rational exponents are another way to express principal nth roots. The general form for converting between a radical expression with a radical symbol and one with a rational exponent is n a _n m = a m = a m n Given an expression with a rational exponent, write the expression as a radical. 1. Determine the power by looking at the numerator of the exponent. 2. Determine the root by looking at the denominator of the exponent.. Using the base as the radicand, raise the radicand to the power and use the root as the index. Example 11 Writing Rational Exponents as Radicals 2 Write as a radical. Simplify. The 2 tells us the power and the tells us the root. _ 2 = 2 = 2

8 CHAPTER 1 Prerequisites We know that = 7 because 7 =. Because the cube root is easy to find, it is easiest to find the cube root before squaring for this problem. In general, it is easier to find the root first and then raise it to a power. Try It #11 _ Write 9 2 as a radical. Simplify. 2 _ = 2 = 7 2 = 9 Example 12 Writing Radicals as Rational Exponents _ Write using a rational exponent. 7 a 2 The power is 2 and the root is 7, so the rational exponent will be _ 2. We get 7 a _7 2. Using properties of exponents, we get _ 7 a 2 = _ a 2 7. Try It #12 Write x (y) 9 using a rational exponent. Example 1 Simplifying Rational Exponents Simplify: a. 2x _ 1 _ x b. 16 9 1 a. 0x x _ 1 Multiply the coefficient. 0x _ + 1 _ Use properties of exponents. 0x _ 19 20 Simplify. b. 9 16 _2 1 Use definition of negative exponents. 9 16 _ 9 16 _ Try It #1 Simplify 8x _ 1 1x 6 _. 2 Rewrite as a radical. Use the quotient rule. Simplify. Access these online resources for additional instruction and practice with radicals and rational exponents. Radicals (http://openstaxcollege.org/l/introradical) Rational Exponents (http://openstaxcollege.org/l/rationexpon) Simplify Radicals (http://openstaxcollege.org/l/simpradical) Rationalize Denominator (http://openstaxcollege.org/l/rationdenom)

SECTION 1. SECTION EXERCISES 9 1. SECTION EXERCISES VERBAL 1. What does it mean when a radical does not have an index? Is the expression equal to the radicand? Explain.. Every number will have two square roots. What is the principal square root? 2. Where would radicals come in the order of operations? Explain why.. Can a radical with a negative radicand have a real square root? Why or why not? NUMERIC For the following exercises, simplify each expression.. 26 6. 26 7. (9 + 16) 8. 289 121 9. 196 10. 1 11. 98 12. _ 27 6 1. 81 1. 800 1. 169 + 1 16. 8_ 0 18 17. 162 18. 192 19. 1 6 6 2 20. 1 + 7 21. 10 22. _ 96 100 2. _ 26. _ 0 22 2 2. 2 0 2. 12 7 27. _ 60 61 8 29. 1 17 0. 16 1. 128 + 2 2.. 1 _ 12. 2 + 16 ALGEBRAIC For the following exercises, simplify each expression. 28. 1 + 2 2. 00x 6. y 2 7. 9p 8. (1p 2 q 6 ) _2 1 _ 2 9. m 289 0. 9 m 2 + 27 1. ab 2 b a 2. 2n 16n. 22x. z + 99z. 0y 8 6. 90bc 2 9x 7. _ 2 1d 8. q_ 2 6p 9. 8 1 x 0. 20 121d _ 2 1. w _ 2 2 w 0 2. 108x + 27x. 12x 2 + 2. 17k. 12n 10 6. 2q 6q 7. 81m 61m 8. 2 72c 2 2c

0 CHAPTER 1 Prerequisites 9. 1 2d 60. 2x 6 + 81x 6 61. 2 6. 128z 16z 6. 1,02c 10 _ 162x 6 16x 62. 6y REAL-WORLD APPLICATIONS 6. A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So the length of the guy wire can be found by evaluating 90,000 + 160,000. What is the length of the guy wire? 66. A car accelerates at a rate of 6 t m/s2 where t is the time in seconds after the car moves from rest. Simplify the expression. EXTENSIONS For the following exercises, simplify each expression. 8 16 1 _ 67. 2 2 68. 2 _2 _ 16 2 _ 8 _ 1 69. mn a 2 c a 7 n 2 m 2 c 70. a a c x 6y + y 71. 72. 128y ( 20x 2 12x ) 100b )( 7 b 7. 6 + 26 6 + 26