Bisimulation, Games & Hennessy Milner logic p.1/32

Similar documents
Bisimulation, Games & Hennessy Milner logic

Solutions to assignment 3

CSC 373: Algorithm Design and Analysis Lecture 9

Maximum Flow. Flow Graph

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

4.8 Improper Integrals

e t dt e t dt = lim e t dt T (1 e T ) = 1

LAPLACE TRANSFORMS. 1. Basic transforms

Graduate Algorithms CS F-18 Flow Networks

Chapter Introduction. 2. Linear Combinations [4.1]

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

EECE 301 Signals & Systems Prof. Mark Fowler

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Randomized Perfect Bipartite Matching

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

ALG 5.3 Flow Algorithms:

Introduction to SLE Lecture Notes

1 The Network Flow Problem

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

REAL ANALYSIS I HOMEWORK 3. Chapter 1

Primal and Weakly Primal Sub Semi Modules

Hadamard-Type Inequalities for s-convex Functions

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network.

September 20 Homework Solutions

Introduction to Congestion Games

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER

CS 573 Automata Theory and Formal Languages

When analyzing an object s motion there are two factors to consider when attempting to bring it to rest. 1. The object s mass 2. The object s velocity

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Algorithmic Discrete Mathematics 6. Exercise Sheet

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

Contraction Mapping Principle Approach to Differential Equations

Lecture 2: Network Flow. c 14

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

On a problem of Graham By E. ERDŐS and E. SZEMERÉDI (Budapest) GRAHAM stated the following conjecture : Let p be a prime and a 1,..., ap p non-zero re

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

A Kalman filtering simulation

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

Positive and negative solutions of a boundary value problem for a

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.)

Anatoly A. Kilbas. tn 1. t 1 a. dt 2. a t. log x

Hennessy-Milner Logic 1.

Chapter 3 Common Families of Distributions

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

1 Review of Zero-Sum Games

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016

Linear Quadratic Regulator (LQR) - State Feedback Design

Price Discrimination

EXERCISES FOR SECTION 1.5

Monochromatic Infinite Sumsets

e 2t u(t) e 2t u(t) =?

Languages That Are and Are Not Context-Free

Reminder: Flow Networks

CSCI565 - Compiler Design

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

Lecture Notes 2. The Hilbert Space Approach to Time Series

Physics 240: Worksheet 16 Name

EECE 301 Signals & Systems Prof. Mark Fowler

Math 334 Fall 2011 Homework 11 Solutions

Graphs III - Network Flow

INSTANTANEOUS VELOCITY

Predator - Prey Model Trajectories and the nonlinear conservation law

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

Notes 04 largely plagiarized by %khc

0 for t < 0 1 for t > 0

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

Three Dimensional Coordinate Geometry

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

Average & instantaneous velocity and acceleration Motion with constant acceleration

And I Saw a New Heaven

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year

Chapter 2. First Order Scalar Equations

Chapter 7: Solving Trig Equations

Chapter 9 - The Laplace Transform

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 10: The High Beta Tokamak Con d and the High Flux Conserving Tokamak.

Echocardiography Project and Finite Fourier Series

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

Problem Set 9 Due December, 7

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

The following report makes use of the process from Chapter 2 in Dr. Cumming s thesis.

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Solutions for Assignment 2

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

Control Systems -- Final Exam (Spring 2006)

Chapter 2: Evaluative Feedback

Today: Max Flow Proofs

And I Saw a New Heaven

Transcription:

Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown uom onex-free lnguge; uring mhine reurively enumerle lnguge; Thi i fine when we hink of n uomon/tm euenil roe whih h no inerion wih he ouide world during i omuion However, uom whih e he me lnguge n ehve very differenly o n ouide oerver Biimulion, Gme & Henney Milner logi 1/32 Biimulion, Gme & Henney Milner logi 2/32 The fmou offee mhine exmle Lelled rniion yem A lelled rniion yem (LTS) L i rile S, A, T where: Inerire oldi Cffè Bevnd l guo di è l limone S i e of e; A i e of ion; T S A S i he rniion relion We will normlly wrie for (,, ) T Lelled rniion yem generlie oh uom nd ree They re enrl rion of onurreny heory We will diu he oervion one n mke ou uh yem Biimulion, Gme & Henney Milner logi 3/32 Biimulion, Gme & Henney Milner logi 4/32 Tre reorder Given e of n LTS L, he word σ = α 1 α 2 α k A i re of when rniion α1 α2 αk 1 k 1 We will ue σ horhnd Suoe h L 1 nd L 2 re LTS The re reorder r S 1 S 2 i defined follow: Tre euivlene Tre euivlene i defined r = r r, ie r def = r r I i immedie h when L 1 = L 2, r i n euivlene relion on he e of n LTS Bu re re no enough: re euivlene i very ore, ine he offee mhine hve he me re r σ A σ σ Oervion 1 r i reflexive nd rniive r Biimulion, Gme & Henney Milner logi 5/32 Biimulion, Gme & Henney Milner logi 6/32

Simulion Suoe h L 1 nd L 2 re LTS A relion R S L1 S L2 i lled imulion whenever: Simulion exmle 1 Simulion i more eniive o rnhing (ie non-deerminim) hn re: if R nd hen here exi uh h nd R Oervion 2 The emy relion i imulion nd rirry union of imulion re imulion Similriy S 1 S 2 i defined he lrge imulion Euivlenly, iff here exi imulion R uh h (, ) R Oervion 3 Similriy i reflexive nd rniive Oervion 4 Simulion euivlene def = 1 1 1 1 2 2 3 2 2 Biimulion, Gme & Henney Milner logi 7/32 Biimulion, Gme & Henney Milner logi 8/32 Simulion exmle 2 Bu i i no enirely ifory 1 2 Biimulion Suoe h L 1 nd L 2 re LTS A relion R S L1 S L2 i lled iimulion whenever: (i) if R nd hen here exi uh h nd R ; (ii) if R nd hen here exi uh h nd R Lemm 5 R i iimulion iff R nd R o re imulion r 1 r 2 r 1 r 2 r 1 Biimulion, Gme & Henney Milner logi 9/32 Biimulion, Gme & Henney Milner logi 10/32 Proerie of iimulion Exmle of iimulion, 1 Lemm 6 i iimulion Proof Vouly rue Lemm 7 If {R i } i I re fmily of iimulion hen i I R i i iimulion Proof Le R = i I R i Suoe R hen here exi k uh h R k In riulr, R k nd o R, hu R i ymmeri If hen here exi uh h nd R k Bu R k imlie R Corollry 8 There exi lrge iimulion I i lled iimilriy If L 1 = L 2 hen iimilriy i n euivlene relion Lemm 9 1 1 2 3 4 5 Proof R = { (, i ) i N } i iimulion Biimulion, Gme & Henney Milner logi 11/32 Biimulion, Gme & Henney Milner logi 12/32

Exmle of iimulion, 2 Reoning ou iimilriy 1 2 1 1 2 3 1 4 To how h e, re iimilr i uffie o find iimulion R whih rele nd ; I i le ler how o how h nd re no iimilr, one n: enumere ll he relion whih onin (, ) nd how h none of hem re iimulion; enumere ll he iimulion nd how h none of hem onin (, ); orrow ome ehiniue from gme heory Biimulion, Gme & Henney Milner logi 13/32 Biimulion, Gme & Henney Milner logi 14/32 Biimulion gme, 1 Biimulion gme, 2 We re given wo LTS L 1, L 2 The onfigurion i ir of e (, ), L 1, L 2 The iimulion gme h wo lyer: P nd R A round of he gme roeed follow: (i) R hooe eiher or ; (ii) uming i hoe, i nex hooe rniion ; (iii) P mu hooe rniion wih he me lel in he oher LTS, ie uming R hoe, i mu find rniion ; (iv) he round i reeed, reling (, ) wih (, ) Rule: An infinie gme i win for P R win iff he gme ge ino round where P nno reond wih rniion in e (iii) Oervion 10 For eh onfigurion (, ), eiher P or R h winning regy Theorem 11 iff P h winning regy ( iff R h winning regy) Biimulion, Gme & Henney Milner logi 15/32 Biimulion, Gme & Henney Milner logi 16/32 P h winning regy P h winning regy Le GE def = { (, ) P h winning regy } Suoe h (, ) GE nd Suoe h here doe no exi rniion uh h (, ) GE Then R n hooe he rniion nd P nno reond in wy whih kee him in winnle oiion Bu hi onrdi he f h h P h winning regy for he gme ring wih (, ) Thu GE i iimulion Biimulion re winning regie: If hen here exi iimulion R uh h (, ) R Whever move R mke, P n lwy mke move uh h he reul i in R Clerly, hi i winning regy for P Biimulion, Gme & Henney Milner logi 17/32 Biimulion, Gme & Henney Milner logi 18/32

Exmle of non iimilr e Similriy nd iimilriy Biimilriy i rnhing-eniive Theorem 12 nd in generl he inluion i ri Proof Any iimulion nd i ooie re lerly imulion On he oher hnd, he following exmle how h iimilriy i finer hn imulion euivlene 1 2 r 1 r 2 r 1 r 2 1 2 r 1 r 2 r 1 r 1 r 2 Biimulion, Gme & Henney Milner logi 19/32 Biimulion, Gme & Henney Milner logi 20/32 Re: euivlene Henney Milner logi r Biimilriy i he fine (=eue le) euivlene we hve onidered Clim 13 Biimilriy i he fine reonle euivlene, where reonle men h we n oerve only he ehviour nd no he e-e We will give lnguge, he o-lled Henney Milner logi, whih derie oervion/exerimen on LTS Biimulion, Gme & Henney Milner logi 21/32 Suoe h A i e of ion Le L ::= []L L L L L L L Given n LTS we define he emni y ruurl induion over he formul ϕ: [A]ϕ if for ll uh h we hve ϕ; A ϕ if here exi uh h nd ϕ; ϕ if i i no he e h ϕ; ϕ 1 ϕ 2 if ϕ 1 or ϕ 2 ; ϕ 1 ϕ 2 if ϕ 1 nd ϕ 2 ; lwy; never; Biimulion, Gme & Henney Milner logi 22/32 HM logi exmle formul Bi roerie of HM logi n erform rniion lelled wih ; [] nno erform rniion lelled wih ; [] n erform rniion lelled wih o e from whih here re no lelled rniion ([] )? Lemm 14 ( De Morgn lw for HM logi) [] = ; = [] ; = ( ); = ( ); = ; = In riulr, o ge he full logi i uffie o onider ju he ue {,,, } or {[],,, } or {, [],,,, } Biimulion, Gme & Henney Milner logi 23/32 Biimulion, Gme & Henney Milner logi 24/32

Diinguihing formul Logil euivlene Definiion 15 The logil reorder L i relion on he e of n LTS defined follow: 1 2 < L iff ϕ ϕ ϕ r1 r2 r1 r2 ( ) ( ) 1 2 r1 r2 r1 r 1 r2 I i lerly reflexive nd rniive Definiion 16 Logil euivlene i L def = L L I i n euivlene relion Oervion 17 Aully, for HM, L = L = L Thi i oneuene of hving negion Proof Suoe L nd ϕ If ϕ hen ϕ, hene ϕ hene ϕ, onrdiion Hene ϕ ( ) ( ) Biimulion, Gme & Henney Milner logi 25/32 Biimulion, Gme & Henney Milner logi 26/32 Henney Milner & Biimulion Soundne Definiion 18 An LTS i id o hve finie imge when from ny e, he numer of e rehle i finie Theorem 19 (Henney Milner) Le L e n LTS wih finie imge Then L = To rove hi, we need o how: Soundne ( L ): If wo e ify he me formul hen hey re iimilr Comleene ( L ): If wo e re iimilr hen hey ify he me formul Remrk 20 Comleene hold in generl The finie imge umion i needed only for oundne L (Soundne) I uffie o how h L i iimulion We will rely on imge finiene Suoe h L nd Then nd o hu here i le one uh h The e of ll uh i lo finie y he exr umion le hi e e { 1,, k } Suoe h for ll i we hve h L i Then ϕ i uh h ϕ i nd i ϕ i Thu while i k ϕ i we mu hve i k ϕ i, onrdiion Hene here exi i uh h i nd L i Biimulion, Gme & Henney Milner logi 27/32 Biimulion, Gme & Henney Milner logi 28/32 Comleene 1 Comleene 2 L (Comleene) We will how hi < L y ruurl induion on formul Be: hen Alo, hen Induion: Modliie ( nd []): If ϕ hen nd ϕ By umion, here exi uh h nd By induive hyohei ϕ nd o ϕ If []ϕ hen whenever hen ϕ Fir, noie h imlie h if hen here exi uh h wih Sine ϕ, lo ϕ Hene []ϕ Prooiionl onneive ( nd ): if ϕ 1 ϕ 2 hen ϕ 1 or ϕ 2 If i i he fir hen y he induive hyohei ϕ 1, if he eond hen ϕ 2 ; hu ϕ 1 ϕ 2 if ϕ 2 ϕ 2 i imilr Noe h omleene doe no need he finie imge umion hu iimilr e lwy ify he me formul In he roof, we ued he f h {, [],,,, } i enough for ll of HM logi Biimulion, Gme & Henney Milner logi 29/32 Biimulion, Gme & Henney Milner logi 30/32

Imge finiene Sulogi of HM The heorem rek down wihou hi umion: 1 } k ime 2 } k ime L r ::= L r Theorem 21 Logil reorder on L r oinide wih he re reorder L ::= L L L Theorem 22 Logil reorder on L oniide wih he imulion reorder Ey o hek, uing he iimulion gme, h 1 2 Soluion: Inrodue infinie onjunion o he logi Biimulion, Gme & Henney Milner logi 31/32 Biimulion, Gme & Henney Milner logi 32/32