Generalized*Gauge*Theories* in*arbitrary*dimensions

Similar documents
New Topological Field Theories from Dimensional Reduction of Nonlinear Gauge Theories

1 Index Gymnastics and Einstein Convention

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS

Quantization of Non-abelian Gauge Theories: BRST symmetry

Parts Manual. EPIC II Critical Care Bed REF 2031

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

Week 6: Differential geometry I

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22.

Semester University of Sheffield. School of Mathematics and Statistics

The Hamiltonian formulation of gauge theories

Jackiw-Pi Model: A Superfield Approach

Ehrhart polynomial for lattice squares, cubes, and hypercubes

Chapter XI Novanion rings

On higher-spin gravity in three dimensions

Kontsevich integral in topological models of gravity

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

page 1 Total ( )

Spin foam vertex and loop gravity

Matrices and Determinants

Matrix Theory. A.Holst, V.Ufnarovski

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Amplitudes beyond four-dimensions

1 Canonical quantization conformal gauge

Hamilton-Jacobi Formulation of A Non-Abelian Yang-Mills Theories

ELEMENTARY LINEAR ALGEBRA

Infrared Propagators and Confinement: a Perspective from Lattice Simulations


Lectures on gauge-gravity duality

EXERCISES. a b = a + b l aq b = ab - (a + b) + 2. a b = a + b + 1 n0i) = oii + ii + fi. A. Examples of Rings. C. Ring of 2 x 2 Matrices

Lecture 15 Review of Matrix Theory III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecturer: Bengt E W Nilsson

A matrix over a field F is a rectangular array of elements from F. The symbol

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action,

M e t ir c S p a c es

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C

Biquaternion formulation of relativistic tensor dynamics

Gauge-Higgs Unification and the LHC

ELEMENTARY LINEAR ALGEBRA

Lecture 9: RR-sector and D-branes

EMERGENT GEOMETRY FROM QUANTISED SPACETIME

Motion of Charged Particles in Fields

ELEMENTARY LINEAR ALGEBRA

`G 12 */" T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S.

Many faces of Mirror Symmetries

Relating DFT to N=2 gauged supergravity

Current Status of Link Approach for Twisted Lattice SUSY Noboru Kawamoto Hokkaido University, Sapporo, Japan

CHAPTER II: The QCD Lagrangian

Secret Key Systems (block encoding) Encrypting a small block of text (say 64 bits) General considerations for cipher design:

Determinant Worksheet Math 113

By following steps analogous to those that led to (20.177), one may show (exercise 20.30) that in Feynman s gauge, = 1, the photon propagator is

M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7;

IIOCTAHOBJIEHILN. 3AKOHOITATEJIbHOEc oe pahiie riejtfl Br,rHc Kofr on[q.c ru ]s. llpe4ce4arenr 3 arono4are,rbuoro Co6paurax B.B.

Quantum Field Theory and the Standard Model

Fundamentals of Engineering Analysis (650163)

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1...

Geometric responses of Quantum Hall systems

Matrix Differentiation

Lecture 10. Primal-Dual Interior Point Method for LP

Higgs Boson Phenomenology Lecture I

Collinearity/Concurrence

3d GR is a Chern-Simons theory

2 ω. 1 α 1. Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th

Around the Chinese Remainder Theorem

Anomalies and SPT phases

2008 Euclid Contest. Solutions. Canadian Mathematics Competition. Tuesday, April 15, c 2008 Centre for Education in Mathematics and Computing

The Multivariate Normal Distribution. In this case according to our theorem

Baryon Physics in Holographic QCD Models (and Beyond) in collaboration with A. Wulzer

Twistor strings for N =8. supergravity

Assignment 10. Arfken Show that Stirling s formula is an asymptotic expansion. The remainder term is. B 2n 2n(2n 1) x1 2n.

Linear Algebra and Matrix Inversion

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes

From Particles to Fields

Phys 201. Matrices and Determinants

Topological Insulators and Superconductors

Advanced Quantum Field Theory Example Sheet 1

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

Derived Poisson structures and higher character maps

( ) = ( ) ( ) = ( ) = + = = = ( ) Therefore: , where t. Note: If we start with the condition BM = tab, we will have BM = ( x + 2, y + 3, z 5)

8.324 Relativistic Quantum Field Theory II

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a

Ma 227 Review for Systems of DEs

ABJM Baryon Stability at Finite t Hooft Coupling

Solution to Problem Set 4

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

Path integral measure as determined by canonical gravity

Math113: Linear Algebra. Beifang Chen

WRT in 2D: Poisson Example

and Localization Kazutoshi Ohta (Meiji Gakuin University)

Smooth Wilson Loops and Yangian Symmetry in Planar N = 4 SYM

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods.

Snyder noncommutative space-time from two-time physics

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2

Effective Field Theories of Topological Insulators

1 Path Integral Quantization of Gauge Theory

Abstract Algebra II Groups ( )

A Non-Technical (Honest!) Explanation of the Problem of Quantum Gravity. Richard Woodard University of Florida

This operation is - associative A + (B + C) = (A + B) + C; - commutative A + B = B + A; - has a neutral element O + A = A, here O is the null matrix

arxiv:gr-qc/ v1 1 Feb 2007

Magnetofluid Unification in the Yang-Mills Lagrangian

Progress in Gauge-Higgs Unification on the Lattice

Transcription:

Generalized*Gauge*Theories* in*arbitrary*dimensions N.K. Watabiki gauge*field gauge*parameter derivative curvature gauge*trans. Chern;Simons Topological* Yang;Mills Yang;Mills

= Quantization of Abelian 2-dim. BF theory d 2 x[ϵ µν φ µ ω ν + b µ ω µ i c µ µ c] M 2 d!! = dv BF = B(d! +! 2 ) (4-dim.) φ A sφ A s µ φ A sφ A φ 0 ϵ µν ν c 0 ω ν ν c 0 ϵ νρ ρ c c 0 iω µ 0 c ib 0 iφ b 0 µ c 0 on shell N=2 twisted SUSY invariance s 2 = {s, s} = s 2 = {s µ,s ν } =0, {s, s µ } = i µ, { s, s µ } = iϵ µν ν. S off-shell AQBF = d 2 x[ϵ µν φ µ ω ν + b µ ω µ i c µ µ c iλρ] M 2 = d 2 xs s 1 M 2 2 ϵµν s µ s ν ( i cc). off shel N=2 twisted SUSY invariance Kato, N.K. Uchida 03 φ A sφ A s µ φ A sφ A φ iρ ϵ µν ν c 0 ω ν ν c iϵ µν λ ϵ νρ ρ c c 0 iω µ 0 c ib 0 iφ b 0 µ c iρ λ ϵ µν µ ω ν 0 µ ω µ ρ 0 µ φ ϵ µν ν b 0

Gauge Theory on the Random Lattice Form Simplex Gauge Theory + Gravity Boson Fermion? SUSY? U l =(e! ) l A = dv +[A, V] ( l = dual link) N.K. Watabiki 91

3-dim. Chern- Simon Gravity Ponzano-Regge gravity N.K., H.B.Nielsen & N.Sato (1999)

4-dim. BF Gravity (N.K., K.Sato & Uchida (2000)) S LBF (F a = e d!+!2 + )

S = Tr 1 2 AQA + 1 3 A3 = 1S 1 + is i + js j + ks k 2 A = QV +[A, V] =1 1 + i ˆ0 + j A 0 + k Â1 1. Q 2 =0 2. {! Q, } = Q, [! Q, +] =Q + 3. Tr( + 0 + )=Tr( 0 + +), Tr( +) =Tr( + ), Tr( 0 )= Tr( 0 )

i 2 = j 2 = k 2 = 1, ij = ji = k, jk = kj = i, ki = ik = j S GCS = Tr 1 2 AQA + 1 3 A3 A = QV +[A, V] (Q = jd) a + b + c = odd or even [q(a, b, c), (a 0,b 0,c 0 )]=0 A = q(1, 1, 1) (1,1,1) + q(1, 0, 0) (1,0,0) + q(0, 1, 0) (0,1,0) + q(0, 0, 1) (0,0,1) = 1 (1,1,1) + i (1,0,0) + j (0,1,0) + k (0,0,1) 2 V = q(0, 0, 0) (0,0,0) + q(0, 1, 1) (0,1,1) + q(1, 0, 1) (1,0,1) + q(1, 1, 0) (1,1,0) = 1 (0,0,0) + i (0,1,1) + j (1,0,1) + k (1,1,0) 2 + AA 0 = A 0 A 2 + AV = VA 2 VV 0 = V 0 V 2 + =

(a,b,c)(x) c =0, 1 (0,0,c)(x) Âc(x) ( = direct sum of bosonic even forms, (0,1,c)(x) A c (x) = direct sum of bosonic odd forms, (1,0,c)(x) ˆc(x) = direct sum of fermionic even forms, (1,1,c)(x) c (x) = direct sum of fermionic odd forms d = dx µ µ A Q = q(0, 1, 0)d = jd A = A B T B =(1 B 1 + i ˆB 0 + ja B 0 + kâb 1 )T B V = V B T B =(1â B 0 + ia B 1 + jˆ B 1 + k B 0 )T B

S 1 = S i = S j = Tr Tr Tr apple apple 1(dA 0 + A 2 0 + Â2 1 + ˆ2 0 )+Â1(d ˆ0 +[A 0, ˆ0]) + 1 3 ˆ0(dA 0 + A 2 0 + Â2 1 2 1)  1 (d 1 + {A 0, 1 }) apple 1 2 A 1 0dA 0 3 A3 0 + 1 +[A 0, Â1]) 2Â1(dÂ1 3 1, 1 3 ˆ3 0, + 1 2 ˆ0(d ˆ0 +[A 0, ˆ0]) + 1 2 1 (d 1 + {A 0, 1 }) ˆ0{ 1, Â1} apple S k = Tr  1 (da + A 2 + ˆ2 2 1 1( 0 1) 3Â3 1 1 (d ˆ0 +[A 0, ˆ0]) 0 0 A = dâ +[A 0, â 0 ]+{Â1,a 1 } +[ 1, ˆ 1 ] { ˆ0, 0 0 0, 0] 0 },  = da {A +[Â1, â 0 ]+[ 1, 0 ]+{ ˆ0, 1 1 0,a 1 } ˆ 1 }, 1 = dˆ 1 [A 0, ˆ 1 ] [Â1, 0 ]+[ 1, â 0 ] [ ˆ0,a 1 ], ˆ0 = d 0 + {A 0, 0 } {Â1, ˆ 1 } +[ 1,a 1 ]+[ˆ0, â 0 ]

c {A 0, 0 } = A B 0 C 0 [T B,T C ], { ˆ0, ˆ 1 } = ˆB 0 ˆ C 1 [T B,T C ], {Â1,a 1 } = ÂB 1 a C 1 [T B,T C ] A = 1 1 + i ˆ0 + ja 0 + kâ1 = 1( (1) 1 + (3) 1 + )+i( (0) 0 + (2) 0 + (4) 0 + ) + j(! (1) 0 + (3) 0 + )+k( (0) 1 + B (2) 1 + H (4) 1 + ), V = 1â 0 + ia 1 + jˆ 1 + k 0 = 1(v (0) 0 + b (2) 0 + h (4) 0 + )+i(u (1) 1 + U (3) 1 + ) + j( (0) 1 + (2) 1 + (4) 1 )+k( (1) 0 + (3) 0 + ) (i) c i : i-form (0) 1,!(1) 0,B(2) 1, (3) 0,H(4) 1,.. (i) c i : i-form v (0) 0,u(1) 1,b(2) 0,U(3) 1,h(4) 0,..

=0, =0 S2 k ( = 0) = S j 3 ( = 0) = S4 k ( = 0) = Tr 1(d! 0 +! 2 2 0) 1B 1 apple 1 Tr 2! 1 0d! 0 3!3 2 0 + 1 (db 1 +[! 0,B 1 ]) 0 1, apple Tr B 1 (d! 0 +! 0) 2 1(d 0 + {! 0, 0 } + B1 2 2 H 1 1 1 =[ 1,v 0 ],! 0 = dv 0 +[! 0,v 0 ]+{ 1,u 1 }, B 1 = du 1 {! 0,u 1 } +[ 1,b 0 ]+[B 1,v 0 ], 0 = db 0 +[! 0,b 0 ]+{ 1,U 1 } + {B 1,u 1 } +[ 0,v 0 ] H 1 = du 1 {! 0,U 1 } +[ 1,h 0 ]+[B 1,b 0 ] { 0,u 1 } +[H 1,v 0 ]

S0 k = S j 1 = S2 k = S j 3 = apple Tr apple 1 Tr apple Tr apple Tr 1( ˆ(0) 0 )2 1 3 2 1 (d 1 +[! 0, 1]) ˆ(0) 0 { (1) 3 1 1(d! 0 +! 2 0 + { ˆ(0) 0, ˆ(2) 0 } ( (1) 1 2! 1 0d! 0 3!3 0 + ˆ(0) 0 1, 1} + 1 ˆ(0) 0 2 1 )2 ) (1) 1 (d ˆ(0) 0 +[! 0, ˆ(0) 0 ]) (d ˆ(0) 0 +[! 0, ˆ(0) 0 ]) 2 1 B 1 (d ˆ(2) 0 +[! 0, ˆ(2) 0 ] { (1) 1,B 1} { (3) 1, 1}) S k 4 = + 1 (db 1 +[! 0,B 1 ]) 0 ( 2 +(ˆ(0) 1 0 )2 ) apple Tr B 1 (d! 0 +! 0 2 + { ˆ(0) 0, ˆ(2) 0 } ( (1) 1 )2 ) 1(d 0 + {! 0, 0 } + B1 2 + { ˆ(0) 0, ˆ(4) 0 } { (1) 1, (3) 1 }) H 1(( ˆ(0) 0 )2 + 2 1) (1) 1 (d ˆ(2) 0 +[! 0, ˆ(2) 0 ]+[ 0, ˆ(0) 0 ]) (3) 1 [! 0, ˆ(0) 0 ]

1 =[ 1,v 0 ]+{ ˆ(0) 0, ˆ (0) 1 },! 0 = dv 0 +[! 0,v 0 ]+{ 1,u 1 } +[ (1) 1, ˆ (0) 1 ] { ˆ(0) 0, (1) 0 }, B 1 = du 1 {! 0,u 1 } +[ 1,b 0 ]+[B 1,v 0 ]+{ ˆ(0) 1 1 0, ˆ (2) 1 0 = db 0 +[! 0,b 0 ]+{ 1,U 1 } + {B 1,u 1 } +[ 0,v 0 ] } +[ (1) { ˆ(0) 0, (3) (1) 0 } +[ 1, ˆ (2) 1 ] { ˆ(2) 0, (1) (3) 0 } +[ 1, ˆ (0) 1 ], H 1 = du 1 {! 0,U 1 } +[ 1,h 0 ]+[B 1,b 0 ] { 0,u 1 } +[H 1,v 0 ] + { ˆ(0) 0, (4) 1 } +[ (1) 1, (3) 0 ]+{ ˆ(2) 0, ˆ (2) 1 } +[ (3) 1, (1) 0 1, (1) 0 ]+{ ˆ(4) 0, ˆ (0) 1 } ]+{ ˆ(2) 0, ˆ (0) 1 }, ˆ(0) 0 =[ˆ(0) 0,v 0] { 1, ˆ (0) 1 }, (1) 1 = dˆ (0) 1 [! 0, ˆ (0) 1 ] [ 1, (1) 0 ] [ ˆ(0) 0,u 1]+[ (1) 1,v 0], ˆ(2) 0 = d (1) 0 + {! 0, (1) 0 } { 1, ˆ (2) 1 } {B 1, ˆ (0) 1 } +[ˆ(0) (3) 1 = dˆ (2) 1 [! 0, ˆ (2) 1 ] [ 1, (3) 0 ] [B 1, (1) 0 ] [ 0, ˆ (0) 1 ] [ ˆ(0) 0,U 1]+[ (1) 1,b 0] [ ˆ(2) 0,u 1]+[ (3) 1,v 0], 0,b 0]+[ (1) 1 ˆ(4) 0 = d (3) 0 + {! 0, (3) 0 } { 1, (4) 1 } {B 1, ˆ (2) 1 } + { 0, (1) 0 } {H 1, ˆ (0) 1 } +[ˆ(0) 0,h 0]+[ (1) 1,U1]+[ˆ(2) 0,b 0]+[ (3) 1,u1]+[ˆ(4) 0,v 0],u 1]+[ˆ(2) 0,v 0],

[Q B,A a µ]=d µ c a, [Q B,c a ]= 1 2 f a bcc b c c Q B [Q B,D µ c a ]=0, [Q B, 1 2 f a bcc b c c ]=0 S[J, K] = d d x L + J a µ A a µ + J a c a + K a µ D µ c a 1 2 K afbcc a b c c

0=h[Q B,e is[j,k] ]i = i d d xh J a µ D µ c a 1 2 J afbcc a b c c e is[j,k] i e i [J,K] = he is[j,k] i a µ = J a µ [J, K] =ha a µe is i, a = J a [J, K] =hc a e is i W [,K]= [J, K] + J J a µ = W a µ, J a = W a 0= J a µ + J a K a K a µ [J, K] = W a µ W K K µ a + W W a K a =(W, W ) BRST =(,W)

{F, G} = F G A A F A G A W [, ]= A : A = A 1 d d x(l + J µ a A a µ + J a c a + A µ a D µ c a c a F A =( 1) A ( F + A ) F A 1 2 f a bcc b c c + c ab a ) {W, W } =2 W A a µ W A µ a 2 W c a W c a =2hJ µ a D µ c a J a 1 2 f a bcc b c c i =0 2 W c a W c a {W, W } =0 B A = {W, A }

A A = D A e i ~ W (, ( + ) A ) / A (deg. = 1) D A e i ~ W (, A ) D A i~ BV W 1 2 {W, W } e i ~ W W = c a µ A µ a A a µ = = c a µ c a = c a = A µ a c a =0 c a = µa µ a i~ BV W 1 {W, W } =0 2 ~! 0 : calssical master equation, {W, W } =0

H(q, p) =p i q i L(q, q), p i = L q i H p i = q i, H q i = L q i = d dt L q i = ṗ i F (q, p) ={F, H} = F H q i p i F p i H q i = F q i qi + F p i ṗ i H t = {H, H} =0 L(q, q) =p i q i H(q, p) S = dt(p q H)

(M,{, }, ), {, } =0 Q {, } Q = Q i x i = q i p i p i q i, (xi )=(q i,p i ) Q 2 = Q{, } = {, {, }} = 1 {{, }, } =0 2 = 0

d! =0,! =! ab dx a ^ dx b {F, G} =(! 1 ab F G ) x a x b L Q! =(i Q d + di Q )! = di Q! =0 i Q = Q a (dx a ) i Q! = d {, } =0 S = d d xd d (pdq + ) (d = µ µ, µ as odd coordinate)

v i (t) = dx i (t) dt = X i (x(t)) X = X i x i x i (t) =x i + tv i deg{t} = 1, t 2 =0 X i (x i (t)) = X i (x + vt) =X i (x)+tv j Xi x j = tx j Xi x j dx i (x(t)) dt = X j Xi x j =0 X i = Q i Q 2 i = Q j Qi =0$ {, } =0 xj

(q a,p a ) grading (1,n 1) : (x i (q a,p a )) {F, G} = F q a G p a +( 1) n F p a G q a F x a =( a 1) x ( F! x a ) F x a (q, p) = 1 2 f a bcp a q b q c {, } =0 (M,{, }, ) =0 Q = {, } = q a Q 2 =0 + p a p a =( 1)n qa f c abq b p c p a + 1 2 f a bcq b q c q a

! M :(x, ) 7! (q a,p a )=( a (x, ), a (x, )) a(x, ) = a (x, ) =c a (x)+ µ A a µ + 1 2 µ a µ (x), a (x)+ µ A a,µ(x)+ 1 2 µ c a,µ (x) (' = anti-field of ') ( ' = ' 1) d = µ µ d 2 xd 2 µ µ = µ dx µ ^ dx W = d 2 x = d 2 x d 2 = d 2 x d 2 ( a d a + (, )) a d a + 1 2 f bc a b 1 2 a µ Fµ a µ A a, ( µ c a + fbca a b µc c )+ 1 4 µ c a,µ fbcc a b c c + 1 b µ 2 µ fbc a c ac c

M (q, p) = 1 2 f a bcp a q b q c {, } = { 1 + 3, 1 + 3 } =0

a (x, ) = a 1(x)+ µ a 1,µ(x)+ 1 2 µ B a 1,µ (x) a (x, ) = ˆa 0 (x)+ µ! a 0,µ(x)+ 1 2 µ ˆa 0,µ (x) W AKS = = d 2 xd 2 ( a d a + 1 (, )+ 3 (, )) d 2 xd 2 a d a + 1 2 f bc a b a c + 1 3! f abc a b c = Tr{ 1 (d! 0 +! 0 2 + { ˆ(0) 0, ˆ(2) 0 } + 1) 2 ) + 1 (d ˆ(0) 0 +[! 0, ˆ(0) 0 ]) + B 1( ( 2 +(ˆ(0) 1 0 )2 )}

a (x, ) = a 1(x)+ µ a 1,µ(x)+ 1 2 µ B a 1,µ (x) a (x, ) = ˆa 0 (x)+ µ! a 0,µ(x)+ 1 2 µ ˆa 0,µ (x) (F, G) = d 2 x F 1a a (x, ) = a 1(x) µ µ! 1a(x)+ 2 c a 1 (x) a (x, ) =c a 0(x)+ µ! 0µ(x)+ a 1 2 G a 0 F a 0 G + F 1a! 0µ a G! µ 1a F! µ 1a a 0 (x) G! a 0µ + F c a 0 ( ' = ' 1) G c 1a F c 1a! G c a 0 F =( 1) ( + F ) [ ]([ ]+[F ]) F ( 1)! W AKS = W BF + W 0

W AKS = W BF + W 0 (W AKS,W AKS )=0 W BF = d 2 x 1 2 1a µ Fµ a d 2 x! µ 1a ( µc a 0 + fbc! a 0µc b c 0)+ 1 2 f bcc a 1ac b 0c c 0 a 0 fabc c b 0 1c W 0 = 1 2 d 2 x f a bc 1a µ! bµ 1! 1 c a b + f abc 1 1 c c 1 W AKS W 0 ghost number of B1 a = c a 1 = 2 1 2 c a = 1 (x) a (x, ) = a 1(x)+ µ a 1,µ(x)+ 1 2 µ B a 1,µ (x) a (x, ) = ˆa 0 (x)+ µ! a 0,µ(x)+ 1 2 µ ˆa 0,µ (x) = c a 0(x)

S k 2 ( =0)= Tr 1(d! 0 +! 0) 2 2 1BB 1 1 =[ 1,v 0 ],! 0 = dv 0 +[! 0,v 0 ]+{ 1,u 1 }, B 1 = du 1 {! 0,u 1 } +[ 1,b 0 ]+[B 1,v 0 ], 0 = db 0 +[! 0,b 0 ]+{ 1,U 1 } + {B 1,u 1 } +[ 0,v 0 ] H 1 = du 1 {! 0,U 1 } +[ 1,h 0 ]+[B 1,b 0 ] { 0,u 1 } +[H 1,v 0 ] X a, (0, 1), Y a, (1, 0), a, (2, 1), X a = a 1 + Y a = + µ! 0µ + a = + 1 2 µ B 1µ (ghost number, hidden grading) Q 1,! 0,B 1

(X(2m) a,ya (2m+1)), (m = 1,, 1) Q = X m Q m, Q 2 =0 Q 2m+1 = A 2 f a bc X k Q 2m = Af a bc Y b (2k+1) Y c ( 2k+2m+1) X k! Y b (2k+1) Xc ( Y a (2m+1) 2k+2m)! + B 2 f a bc X a (2m) X k X b (2k) Xc ( 2k+2m+2)! Y a (2m+1) (A, B = const.) Q 2 = {, {, }} = 1 {{, }, } =0 2

= A 2 X X k m f abc Y b (2k+1) Y c ( 2k+2m+1) Xa ( 2m) + B 3! S = d 2 xd 2 X m X ( X X f abc X(2k) a Xb ( 2k+2m+2) Xc ( 2m) k m 2m)a dy a (2m+1) +! S = 1X 1X d 2 xtr {Cn B ( µ µ Cn B + ( µ CmµC B B (m+n) + {CF m, C F (m+n) } µ CmµC F F (m+n) )) + C 1X n B m= 1 n= 1 C F n µ ( µ C F nµ + m=1 (C F mc F (m+n) + CB mc B (m+n) ) 1X [Cmµ,C B F (m+n) ])} m= 1 V 2 = 1 A =[Q + A, V 1 ] F =0 2 1A =[Q + A, V 2 ]={Q + A, [Q + A, V]} = 1 2 [{Q + A,Q+ A}, V] =1 [F, V] =0 2

Y a (2m+1) = CF,a 2m+1 + µ C B,a 2mµ + 1 2 CF,a 2m 1µ Y a X a (2m) = CB,a 2m + µ C F,a 2m 1µ + 1 2 CB,a 2m 2µ (2m+1) = a (2m+1) + µ! a (2m)µ + 1 2 µ ˆa (2m 1)µ X a (2m) = a (2m) + µ a (2m 1)µ + 1 2 µ B a (2m 2)µ a = X m Y a (2m+1) = X m a (2m+1) + µ X m! a (2m)µ + 1 2 µ X m ˆa (2m 1)µ = a + µ! µ a + µ ˆa µ a = X m X a (2m) = X m a (2m) + µ X m a (2m 1)µ + 1 2 µ X m B a (2m 2)µ = a + µ µ a + µ B µ a a,! µ,b a µ a

(x µ ( ),p µ ( )) ( µ ( ), µ ( )) Bx µ ( ) = µ ( ) B µ ( ) =0 Bp µ ( ) =0 B µ ( ) = p µ ( ) S = d B ( µ (ẋ µ p µ )) = d ( B µ (ẋ µ p µ ) µ B ẋ µ ) = d (p µ ẋ µ p µ p µ + µ µ ) 2p µ =ẋ µ S on-shell = d 1 4ẋµ ẋ µ + µ µ

x,µ = L ẋ µ = p µ,µ = L µ = µ [x µ,p ]=i µ { µ, } = i µ Q B = i µ p µ = µ µ = d x, > (x, ) =<x, >= (x)+ µ µ(x)+ 1 2 µ B µ (x, ) =<x, >= ˆ(x)+ µ! µ (x)+ 1 2 µ ˆµ

<x, Q B >= µ µ (x, ) =0 <x, Q B >= µ µ (x, ) =0 >= Q B B >, >= Q B F > S =< Q B >= d 2 xd 2 (x, )Q B (x, ) S = d 2 xd 2 a d a + 1 2 f a bc a b c + 1 3! f abc a b c

deg. of (q a,q a )=(1, 0) {F, G} = F q a G q a S = F q a G q a = 1 3! f abcq a q b q c, {, } =0 1 2 q adq a + 1 3! f abcq a q b q c q a! A a = 1 1 a + i ˆa 0 + ja a 0 + kâa 1 Q = jd V a = 1â a 0 + ia a 1 + jˆ a 1 + k a 0 S GCS = Tr 1 2 AQA + 1 3 A3 (A = A a T a, V = V a T a ) A = QV +[A, V]

A a = 1 a 1 + i ˆa 0 + ja a 0 + kâa 1 = 1 a 1 + kâa 1 + i( ˆa 0 ka a 0)! ( a 1 + Âa 1)+(ˆa 0 A a 0) a 1 + a 0 = q a = S = = 1 2 q adq a + 1 3! f abcq a q b q c apple 1 2 ( 1a + 0a)d( a a 1 + 0)+ 1 3! f abc( a 1 + a 0)( b 1 + b 0)( c 1 + c 0) = S E + S O a S E = 1ad 0 + 1 2 f a b c abc 1 0 0 + 1 3! f a b abc 1 1 c 1 S O = 1 2 ( 1ad a 1 + 0ad a 0)+ 1 2 f abc a 0 b 1 c 1 + 1 3! f abc a 0 b 0 c 0 S O