Towards Synthesizing Artificial Neural Networks that Exhibit Cooperative Intelligent Behavior: Some Open Issues in Artificial Life Michael G.

Similar documents
NEUROEVOLUTION. Contents. Evolutionary Computation. Neuroevolution. Types of neuro-evolution algorithms

Environmental signals

Chapter 1 Introduction

Chapter 44. Table of Contents. Section 1 Development of Behavior. Section 2 Types of Animal Behavior. Animal Behavior

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele

Chapter 53 Animal Behavior

May 11, Aims: Agenda

Data Mining Part 5. Prediction

4 Questions relating to Behavior

Bounded Approximation Algorithms

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller

Lecture 7 Artificial neural networks: Supervised learning

Chapter 14 The Evolution of Social Behavior (1 st lecture)

The Mechanisms of Evolution

Eusocial species. Eusociality. Phylogeny showing only eusociality Eusocial insects. Eusociality: Cooperation to the extreme

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Living in groups 1. What are three costs and three benefits of living in groups?

Questions About Social Behavior

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Are individuals in a population of a species the same?

Neuroevolution for sound event detection in real life audio: A pilot study

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Environmental Influences on Adaptation

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

PAWS Science Grade 4 Released Items With Data Life Systems

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

Swarm-bots. Marco Dorigo FNRS Research Director IRIDIA Université Libre de Bruxelles

SPRING SEMESTER 2017 FINAL EXAM STUDY GUIDE NAME: HR:

Artificial Intelligence

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning

Parts 3-6 are EXAMPLES for cse634

Neural networks. Chapter 20. Chapter 20 1

Artificial Neural Networks Examination, June 2005

Simple Neural Nets For Pattern Classification

Ecology Notes CHANGING POPULATIONS

What is behavior? What questions can we ask? Why study behavior? Evolutionary perspective. Innate behaviors 4/8/2016.

Lecture 4: Perceptrons and Multilayer Perceptrons

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

28 3 Insects Slide 1 of 44

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

NOTES Ch 17: Genes and. Variation

4 th Grade PSI. From Molecules to Organisms. Structure & Function. Slide 2 / 83. Slide 1 / 83. Slide 4 / 83. Slide 3 / 83. Slide 5 / 83.

ARTIFICIAL INTELLIGENCE

V. Evolutionary Computing. Read Flake, ch. 20. Genetic Algorithms. Part 5A: Genetic Algorithms 4/10/17. A. Genetic Algorithms

Neural networks. Chapter 20, Section 5 1

CMSC 421: Neural Computation. Applications of Neural Networks

CS 4700: Foundations of Artificial Intelligence

Science Unit Learning Summary

Forecasting & Futurism

Animal Science. Exploring the world of. animals. Grace Maxson. Tiger sdoor Publishing CO.

Genetic & Evolutionary Roots of Behavior Gleitman et al. (2011), Chapter 2

Grade

Population Ecology. Study of populations in relation to the environment. Increase population size= endangered species

Neural networks. Chapter 19, Sections 1 5 1

Machine Learning. Neural Networks

Artificial Intelligence (AI) Common AI Methods. Training. Signals to Perceptrons. Artificial Neural Networks (ANN) Artificial Intelligence

3 Types of Interactions

Integer weight training by differential evolution algorithms

An artificial neural networks (ANNs) model is a functional abstraction of the

Biological Anthropology Sample Exam 2 MULTIPLE CHOICE

Organism Interactions in Ecosystems

Lecture 4: Feed Forward Neural Networks

Structure Learning of a Behavior Network for Context Dependent Adaptability

CS:4420 Artificial Intelligence

Applied Statistics. Multivariate Analysis - part II. Troels C. Petersen (NBI) Statistics is merely a quantization of common sense 1

The Problem of Where to Live

AI Programming CS F-20 Neural Networks

Mutualism: Inter-specific relationship from which both species benefit

CS 4700: Foundations of Artificial Intelligence

Mutualism. Mutualism. Mutualism. Early plants were probably wind pollinated and insects were predators feeding on spores, pollen or ovules

Evolution Common Assessment 1

V. Evolutionary Computing. Read Flake, ch. 20. Assumptions. Genetic Algorithms. Fitness-Biased Selection. Outline of Simplified GA

Station #5: Evolution. Read over the Theory of Evolution study guide Answer the following questions:

Multilayer Perceptron Tutorial

Mammalogy Lecture 15 - Social Behavior II: Evolution

LECTURE 08. Today: 3/3/2014

IV. Evolutionary Computing. Read Flake, ch. 20. Assumptions. Genetic Algorithms. Fitness-Biased Selection. Outline of Simplified GA

Adaptations and Natural Selection. Adaptations and Natural Selection

LIFE SCIENCE CHAPTER 14 FLASHCARDS

Multilayer Perceptron

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

BIOLOGY WORKSHEET GRADE: Two robins eating worms on the same lawn is an example of

Cooperation. Main points for today. How can altruism evolve? Group living vs. cooperation. Sociality-nocooperation. and cooperationno-sociality

NOTES CH 17 Evolution of. Populations

Lecture 5: Logistic Regression. Neural Networks

Neural Networks Task Sheet 2. Due date: May

STUDY GUIDE SECTION 16-1 Genetic Equilibrium

Inheritance part 1 AnswerIT

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question.

SimAnt Simulation Using NEAT

ANIMAL COMMUNICATION III. CONTEXT A. PARENT OFFSPRING BEGGING IN CHICKS

Available online at ScienceDirect. Procedia Computer Science 20 (2013 ) 90 95

Linear discriminant functions

:: Slide 1 :: :: Slide 2 :: :: Slide 3 :: :: Slide 3 continued :: :: Slide 4 :: :: Slide 5 ::

Mastery. Chapter Content. Natural Selection CHAPTER 5 LESSON 1

Area of Focus: Biology. Learning Objective 1: Describe the structure and function of organs. Pre-Learning Evaluation: Teaching Methods and Process:

Transcription:

Towards Synthesizing Artificial Neural Networks that Exhibit Cooperative Intelligent Behavior: Some Open Issues in Artificial Life Michael G. Dyer Computer Science Department, UCLA

Overview Introduction AI vs AL Approach to Cognition Animal Intelligence Synthesizing Animal Intelligence via Evolution and Learning

Introduction Focus: Understanding the nature of intelligence from an AL perspective, the evolution of complex nervous systems to support cooperative behavior. Main Interest: Role of ANNs in supporting cognitive process Role of communication in survival strategies

AI vs AL Approach to Cognition Artificial Intelligence (AI) Focus on Individual Cognition as operations of logic independent of perception Starts with human-level cognition Top-down approach: engineer complex systems Direct specification of cognitive architectures Human-level mental tasks Artificial Life (AL) Focus on group or population Cognition as operation of nervous systems integrated with sensory/motor experiences. Starts with animal-level cognition Bottom-up approach: rely on evolution, development and learning Indirect specification Survivability in complex environments is the overriding task

AL Modeling Approach Involves specification of below components: Environments: Parameters of the simulated worlds where behaviors may evolve or develop. Processes of Genetic expression: Artificial organisms capability of evolving or developing behaviorally. Learning and Development: Methods under genetic control for modifying or growing the nervous system of artificial animals during their lifetime. Evolution: Recombination and mutation of parental genomes during mating to produce variation in the offspring. An alternative to engineering complex systems but has issues.

Common Behavior in Animals Social Grouping - useful for protection and enhance cooperation. Specialization of Labor - soldier, queen, drone, forager and nest builder. Food Finding, Preparation and Storage ants following pheromone trails, wild cats plucking the feathers, wolves dig up holes to drop meat. Symbiotic behavior Egyptian plover bird cleans crocodile s mouth. Dominance, Combat and Territoriality kangaroo s boxing. Mate Selection and Mating courtship of Australian bower birds.

Common Behavior in Animals Nesting bees, ants, birds. Parenting sheep require 20 min. licking and cleaning their babies to create memory trace. Predation Strategies bears scooping fish, lions hunt cooperatively. Predator avoidance and Defense fleeing to trees, water or burrows. Mobbing. Attacking when cornered. Dissembling Behavior remaining immobile when mauled. Primitive tool use and Culture using sticks, rocks or other natural object for food preparation or nest maintenance. Other Complex Behaviors migration, navigation etc.

Cooperation via Communication Cooperation requires communication which can be visual, tactile, acoustic or olfactory means. Communication need not be intentional and may occur both within and across species. Insect Communication via chemicals, tactile motions and visual displays. Avian Communication acoustic and visual Mammalian Communication wide variety of forms Primate Communication acoustic and visual Cross-Species Communication predator prey interactions.

Development and Learning Behaviors are the result of complex interactions between genetic and developmental factors. Although genetic effects are more noticeable and tend to dominate lower life forms, there is strong evidence that nearly all animals are capable of learning (e.g. bees learn the color and odor of certain flowers)

Related Research More realistic modeling techniques are possible as a result of great increase in computational power with lower cost. Some examples of simulated environments: Evolution/Learning of Food Discrimination Evolution of Foraging and Trail Laying Evolution of Communication Evolution of Predation and Predator Avoidance Toward the Synthesis of Protohuman Intelligence

Evolution/Learning of Food Discrimination [Todd and Miller] An aquatic environment with two patches of plant material in each there are 2 distinct set of plants: food and poison. The color of food and poison is opposite in two patches. Smell is same for each type of plant in both patches. A creature born in one patch stays in that patch for its lifetime however, its offspring might born in any patch. Creatures classify if the floating particles are food or poison according to its color or smell. Although smell is a consistent distinction between the plant types, it is not to be trusted due to turbulence.

Evolution of Foraging and Trail Laying [Collins] A series of experiments, AntFarm I through V were carried out hoping to observe foraging and trail laying behavior in ants. First trail laying behavior were un-antlike, mostly in circular motion. In later stages of experiment antlike exploration evolved but pheromone release was did not until it is forced for certain generations.

Evolution of Communication Werner and Dyer experiment: In a grid environment male and female members try to mate where females are immobile and males are blind. Whenever a male is in 5X5 grid sensory area, females signal to direct the male. As a result of the experiment females evolved to produce correct signals for directions while males coevolved to interpret the signals.

Evolution of Predation and Predator Avoidance Werner and Dyer experiment: 2D grid environment where multiple species (biots) inhabit. Environment contains physical objects (trees, holes, plants etc.) Biots produce involuntary smell to distinguish its species and sound relative to their speed. They can also make voluntary sounds for communication. Whenever two biots of same species and different gender meets in same grid they mate. In one of the results prey learned to run away from the predator and predator learned to chase. Also prey evolved to form herds to protect from its predator.

Toward the Synthesis of Protohuman Intelligence Still too early to discuss synthesis of protohuman forms of intelligence via AL techniques since even complex animal behaviors not yet been engineered, evolved or designed. It may be possible to engineer sophisticated ANNs that are capable of aspects of human thinking and placed in an environment where they can undergo evolution.

Evolving Neural Networks D. B. Fogel, L. J. Fogel and V. W. Porto

Outline Neural Networks Evolutionary Programming Experiments with Evolutionary Networks XOR Problem Gasoline Blending Problem Conclusion / Discussion

Artificial Neural Networks Parallel processing structures that provide the capability to perform various pattern recognition tasks. Their architecture is modeled after the brain. Topologies can be constructed to generate arbitrarily complex decision regions hence they are well suited for use as detectors and classifiers.

Artificial Neural Networks Consists of multiple units called Artificial Neurons or nodes. Each node is part of one of 3 types of hierarchically ordered layers: Input, Hidden and Output layers. In each layer input is processed and passed to the next layer for further processing.

Artificial Neuron (Node) Receives one or more inputs, sums these according to their weights and produces an output after passing the sum through the activation function. The weight of inputs are modified to match the desired output. Therefore capable of learning.

Multi-layer Neural Networks A network is trained over a set of samples by adjusting the weights of interconnections using back propagation. A trained network is then used to classify future inputs according to their similarity with the training sample.

Why Artificial Neural Networks ANNs do not require any assumptions on underlying statistics of the environment like classic pattern recognition algorithms. ANNs are can effectively address a broad class of problems. ANNs have an intrinsic fault tolerance: Network can perform well in overall even if some neurons may fail.

Problems with ANNs Back propagation uses a gradient search in order to minimize the error between actual and target outputs which does not guarantee to find the global minimum. Solutions for local minimum: Avoid the problem and restart with a random set of weights Perturb the weights and continue training Some methods are successful at overcoming local optima but require large execution times. Evolutionary Programming

Evolutionary Programming An original population of machines are measured by their ability to predict next event w.r.t. a payoff function. Offspring are created through random mutation of parents. Offspring are scored on their predictive ability as their parents. Machines that are most suitable for the task at hand are probabilistically selected to become new parents. An actual prediction is made and surviving machines become parents of the next generation.

Adaptive Topography Wright introduced the concept (1932) which describes the fitness of the organisms. It is the mapping of genotypes to their respective phenotypes. Each peak in the curve represent an optimized phenotype. Adaptive topography is subject to change w.r.t. the environment.

Applying Evolutionary Programming to train ANNs Adaptive topography is applied to minimize the error while evolution is proceeding. Mutation and selection is performed on the weights and bias terms of the network rather than the state machines. At each generation a population of vectors whose components are the weight and bias terms is maintained. Each vector has a corresponding error score. The ones with the smallest error score are selected to become parents of next generation.

An Example A set of 50 parent vectors were maintained at each generation to minimize F(x,y). For each vector to survive it has to compete 10 other vectors for a win. (opponents error/(opponents error + self error))

An Example (cont d)

XOR Problem A multilayer perceptron with 1 hidden layer was used. A population of 50 parent vectors were initialized randomly. Evolutionary programming solved this problem before 40 th generation while back propagation requires 240.

A Gasoline Blending Problem Identify if octane rating of a blend of 5 chemicals is equal to 100 using a multilayer perceptron with 2 hidden layers. Fully trained network made no errors in classification. Appropriate set of weights was discovered fewer than 100 generations while back propagation requires 400 to 500 epochs.

Conclusion Evolutionary programming can be implemented to optimize the weighted interconnections of any generalized network. Back propagation is limited to certain topologies. Real world pattern classification problems are typically contain multiple optima. Back propagation guarantees to find local one and needs to be restarted with random points or additional nodes in case of unsatisfactory performance. In back propagation, it is possible to overdefine the network.

Conclusion Evolutionary programming offers a parallel search which can overcome local optima. Although Evolutionary programming is more costly than back propagation per iteration, overall performance is almost the same because evolutionary algorithm requires fewer iterations.