Light ion production in 175 MeV quasi mono-energetic neutron induced reactions on carbon, oxygen, and silicon

Similar documents
Neutron-Induced Soft Error Analysis in MOSFETs from a 65nm to a 25 nm Design Rule using Multi-Scale Monte Carlo Simulation Method

Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions

Analysis of cosmic ray neutron-induced single-event phenomena

Measurement of activation of helium gas by 238 U beam irradiation at about 11 A MeV

Improvements and developments of physics models in PHITS for radiotherapy and space applications

Neutron and Gamma-ray Emission Double Dierential Cross Sections. *5 Energy Conversion Engineering, Kyushu University, Kasuga-koen, Kasuga-shi 816.

JRPR. Measurement of Neutron Production Doubledifferential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon Carbon Ions.

Analyses of shielding benchmark experiments using FENDL-3 cross-section data starter library for ITER and IFMIF applications

Recent Developments of the PHITS code

Simulation of quasi-monoenergetic Li(p,n) neutron source up to 50 MeV proton energy

Journal of Radiation Protection and Research

PoS(FNDA2006)016. A New Neutron Beam Facility at TSL. Alexander V. Prokofiev *, Olle Byström, Curt Ekström, Volker Ziemann

Benchmark Test of JENDL High Energy File with MCNP

Recent activities in neutron standardization at NMIJ/AIST

Neutron detection efficiency from the 7 Li(p,n) reaction (R405n)

ELASTIC NEUTRON SCATTERING STUDIES AT 96 MeV ON ELEMENTS OF INTEREST FOR TRANSMUTATION

MEASUREMENTS OF NUCLEON-INDUCED FISSION CROSS-SECTIONS OF SEPARATED TUNGSTEN ISOTOPES AND NATURAL TUNGSTEN IN THE MEV ENERGY REGION

Monte Carlo Simulation concerning Particle Therapy

External MC code : PHITS

Available online at ScienceDirect. Physics Procedia 59 (2014 )

COMPARISON OF COMPUTER CODES APPLICABILITY IN SHIELDING DESIGN FOR HADRON THERAPY FACILITIES *

Nuclear data evaluation of 206 Pb for proton- and neutron-induced reaction in energy region from 20 to 200 MeV

Studies on 3D Fusion Reactions in TiDx under Ion Beam Implantation

Improving the Neutron Cross-section Standards 238 U (n,f) and 6 Li (n,α)

Elastic Recoil Detection Method using DT Neutrons for Hydrogen Isotope Analysis in Fusion Materials. Abstract

Radiation damage calculation in PHITS

Neutron Time-Of-Flight Spectrometer Based on HIRFL for Studies of Spallation Reactions Related to ADS Project

Proton induced reactions on natural U at 62.9 MeV

The LIONS experimental programme

Author(s) Iwamoto, Y; Hagiwara, M; Nishiizumi Shibata, S. Citation Radiation protection dosimetry (201.

Measurement of the energy spectrum from the neutron source planned for IGISOL

Author(s) Tatsuzawa, Ryotaro; Takaki, Naoyuki. Citation Physics Procedia (2015), 64:

TUTORIAL ON NEUTRON PHYSICS IN DOSIMETRY. S. Pomp 1,*

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications. 30 September - 4 October, 2013

Nuclear Cross-Section Measurements at the Manuel Lujan Jr. Neutron Scattering Center

PHITS calculation of the radiation field in HIMAC BIO

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H.

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

Integral Benchmark Experiments of the Japanese Evaluated Nuclear Data Library (JENDL)-3.3 for the Fusion Reactor Design

1.E Neutron Energy (MeV)

ISOSPIN RESOLVED DOUBLE PION PRODUCTION AT CELSIUS

A new method to acquire nuclear fission data using heavy ion reactions a way to understand the fission phenomenon

Neutron multiplicity. Total radioactivity (Ci) Time after beam cut. Target A s 1min 1h 1d 1m 1y 10y 100y

Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 103 Using the PHITS Code

Measurement of 59 Ni(n, p) 59 Co Reaction Cross-section through Surrogate Technique for Fusion Technology Applications

Development of displacement damage model in PHITS and comparison with other codes in a high-energy region


DDX measurement for charge particle production reaction by gridded ionization chamber

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

ARTICLE. II. Method 1. Detector Figure 1 shows a schematic view of the spectrometer. The spectrometer consists of two 2-inch-diameter BF 3

This paper should be understood as an extended version of a talk given at the

Neutrons For Science

in2p , version 1-28 Nov 2008

The light nuclei spin structure from the hadronic interactions at intermediate energies

Method of active correlations in the experiment 249 Cf+ 48 Ca n

A Comparison between Channel Selections in Heavy Ion Reactions

Response measurement of various neutron dose equivalent monitors in MeV neutron fields

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Present Status of the JENDL Project. Osamu IWAMOTO and Kenji YOKOYAMA Japan Atomic Energy Agency

Measurements of liquid xenon s response to low-energy particle interactions

PROGRESS OF NUCLEAR DATA MEASUREMENT IN CHINA

Detekce a spektrometrie neutronů. neutron detection and spectroscopy

Invited. Recent advances in the JENDL project. 1 Introduction. 2 Activities for general-purpose file

Precision neutron flux measurement with a neutron beam monitor

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B

Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere

EXPERIMENTAL STUDY OF NEUTRON FIELDS PRODUCED IN PROTON REACTIONS WITH HEAVY TARGETS. Nuclear Physics Institute AS CR, Rez Czech Republic

Geant4 simulation of SOI microdosimetry for radiation protection in space and aviation environments

In our recent paper [1], applicability of the self-activation of an NaI scintillator has been studied for the photo-neutron monitoring around

Characterization of the 3 MeV Neutron Field for the Monoenergetic Fast Neutron Fluence Standard at the National Metrology Institute of Japan

I. 1. Nuclear Structure Study of 50 Mn by Charge-exchange (p,n) Reaction on 50 Cr

Nuclear reactions studies at NFS for improved nuclear data for science and technology

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor

Nuclear Reaction Analysis (NRA)

Review of nuclear data of major actinides and 56 Fe in JENDL-4.0

Measurement of Neutron-Production Double-Differential Cross Sections for Nuclear Spallation Reaction Induced by 0.8, 1.5 and 3.

EEE4106Z Radiation Interactions & Detection

Analysis of angular distribution of fragments in relativistic heavy-ion collisions by quantum molecular dynamics

Department of Physics and Astronomy, University of Kentucky, Lexington, KY , USA 2

Neutron Metrology Activities at CIAE (2009~2010)

CHARACTERISTICS OF LIGHT CHARGED PARTICLE EMISSION IN THE TERNARY FISSION OF 250 CF AND 252 CF AT DIFFERENT EXCITATION ENERGIES

Fragmentation and space radioprotection

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

anti-compton BGO detector

Experimental facilities and techniques. Stephan Pomp Department of physics and astronomy Uppsala University

Fast-Neutron Production via Break-Up of Deuterons and Fast-Neutron Dosimetry

Fission Fragment characterization with FALSTAFF at NFS

Measurements of the gamma-quanta angular distributions emitted from neutron inelastic scattering on 28 Si

Characterization of quasi-projectiles produced in symmetric collisions studied with INDRA Comparison with models

(PHENS) for Active Diagnostics of Radiation Environment in Spacecraft

Neutronics Experiments for ITER at JAERI/FNS

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

HiRA: Science and Design Considerations

Flux and neutron spectrum measurements in fast neutron irradiation experiments

PoS(Baldin ISHEPP XXII)042

SEARCH FOR COHERENT DEUTERON FUSION BY BEAM AND ELECTROLYSIS EXPERIMENTS

MEASUREMENT AND DETECTION OF RADIATION

Neutron Scattering at 96 MeV

Measurement of prompt fission γ-ray spectra in fast neutroninduced

MEASUREMENTS OF PARTICULE EMISSION SPECTRA IN PROTON INDUCED REACTIONS OF INTEREST FOR THE DEVELOPMENT OF ACCELERATOR DRIVEN SYSTEMS

Transcription:

DOI: 10.15669/pnst.4.569 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 569-573 ARTICLE Light ion production in 175 MeV quasi mono-energetic neutron induced reactions on carbon, oxygen, and silicon Yukinobu Watanabe a*, Shusuke Hirayama a, Hiroshi Umishio a, Yuuki Naitou a, Masateru Hayashi a, Riccardo Bevilacqua b, Vasily Simutkin b, Stephan Pomp b, Cecilia Gustavsson b, Michael Österlund b, Anders Hjalmarsson c, Alexander Prokofiev c and Udomrat Tippawan d a Department of Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan; b Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden; c The Svedberg Laboratory, Uppsala University, Box 533, SE-751 21 Uppsala, Sweden; d Plasma and Beam Physics Research Facility, Chiang Mai University, P.O.Box 217, 50200, Thailand Double-differential cross sections of light ions (p, d, t, 3 He, and α) from carbon, oxygen, and silicon induced by 175 MeV quasi mono-energetic neutrons were measured using the Medley setup at the The Svedberg Laboratory (TSL) in order to benchmark evaluated nuclear data and nuclear reaction models. The Medley is a conventional spectrometer system which consists of eight counter telescopes. Each telescope is composed of two silicon surface barrier detectors as the ΔE detectors and a CsI(Tl) scintillator as the E detector for particle identification. The telescopes are placed at angles from 20 to 160 in steps of 20. The measured double-differential production cross sections of light ions for oxygen and silicon are compared with PHITS calculations using the following nuclear reaction options: the high-energy nuclear data library (JENDL/HE-2007), the quantum molecular dynamics (QMD) model, the modified quantum molecular dynamics (MQMD) model, and the intra-nuclear cascade (INC) model based on the Bertini Model. Keywords: 175 MeV; quasi mono-energetic neutrons; light ion production; double-differential cross sections; carbon; oxygen; silicon; PHITS; benchmark 1. Introduction 1 Recently, there have been increasing nuclear data needs for neutron-induced light-ion production at intermediate energies from 20 MeV to 200 MeV for various applications related to neutron transport and dosimetry for radiation safety, dose estimation in advanced particle therapy, soft error prediction in microelectronic devices, etc. For these applications, double-differential cross sections (DDXs) of light-ion production are required to validate nuclear reaction models. However, the experimental data are currently scarce over 100 MeV. In the present work, therefore, we have measured DDXs of light ions (p, d, t, 3 He, and α) from carbon, oxygen, and silicon induced by 175 MeV quasi mono-energetic neutrons using the Medley spectrometer at the The Svedberg Laboratory (TSL) in Uppsala in order to satisfy these needs. Previously, measured double-differential light-ion yield data were reported in Refs.[1,2]. In this work, we derive the DDXs averaged over the quasi mono-energetic neutron spectrum accepted with the time-of-flight (TOF) method. Finally, the measured DDXs are compared with the high-energy nuclear data library, JENDL/HE-2007 [3], *Corresponding author. Email: watanabe@aees.kyushu-u.ac.jp and some built-in reaction models in PHITS [4]. 2. Experimental method Details of the experimental method have been reported in Refs.[1,2,5]. Only brief summaries are described here. Four disc-shaped targets (C, CH 2, Si, and SiO 2 ) placed in the Medley chamber were irradiated by quasi mono-energetic neutrons generated by the 7 Li(p,n) 7 Be reaction. Each target size is summarized in Table 1. The SiO 2 target was used as the oxygen target by the subtraction of silicon contribution. Energy and angular distributions of light ions produced from the target were measured with the Medley spectrometer which is composed of eight telescopes placed at angles from 20 to 160 in steps of 20. Each telescope consisted of two silicon surface barrier detectors (50~60 μm and 1000 μm) as the ΔE detectors and a CsI(Tl) detector as the E detector. Moreover, the incident neutron spectrum was measured using the same spectrometer with both CH 2 target and carbon target by means of a conventional proton recoil method. The 7 Li(p,n) 7 Be reaction produces both peak and low-energy tail neutrons. Therefore, a time-of-flight (TOF) method was used in order to reduce 2014 Atomic Energy Society of Japan. All rights reserved.

570 Y. Watanabe et al. the contribution of low-energy tail neutrons in the accepted incident neutron spectrum. The off-line data analysis will be explained in the following section. Table 1. The size of targets used in the measurement. Target Thickness (mm) Diameter (mm) C CH 2 Si SiO 2 1.0 5.0 0.96 1.0 22 3. Data reduction procedure Data analysis procedure based on ΔE-E particle identification technique is the same as in Refs.[1,2,5]. Energy calibration of all detectors was made using the relation between measured pulse height and calculated energy deposition in each detector as follows. Events in the ΔE-E bands were fitted with respect to the energy deposition in the ΔE detectors, which was determined from the thickness and the energy loss calculated with SRIM code [6]. A linear response is expected for silicon detectors in the measured range of energy. The ΔE detectors were calibrated using the point where each charged particle starts to punch through the ΔE detectors. For the energy calibration of the E detectors, the following approximate expression was applied to each light ion, which reflects a non-linear relationship between the light output, L, and the energy deposition, E, in the CsI(Tl) scintillator: 2 E a bl c( bl) for hydrogen isotopes (1) E a bl cln(1 dl) for helium isotopes (2) where a, b, c and d are the fitting parameters. The parameter c depends on the kind of charged particles. The efficiency correction due to the reaction losses in the CsI(Tl) scintillator was made using the same method as reported in Ref.[1]. The incident neutron spectrum accepted by the TOF gate was obtained from the net recoil proton spectrum from np scattering in the measurement of CH 2 target. Details of deriving the neutron spectrum have been reported in Ref.[5]. The obtained neutron spectrum is shown in Figure 1. After the TOF gate cut, about half of the accepted neutrons are included in the peak component around 175 MeV and the rest is composed of the low energy tail. The tail component below 70 MeV is negligibly small as shown in Figure 1. The measured double-differential light-ion production cross sections for the target k were determined using the following expression: 2 d Φ Ω f E k θ, E Yk θ, E N CH CH CH ( ) H 1 dσ 2 2 2 H (3) ded YH Nk Φk Ωk fk ( E) E dω where Y(θ,E) is the net counts in a certain energy bin ΔE at laboratory scattering angle θ for each ion, Y H is the net counts in the recoil proton peak and the number of the net counts due to np scattering is obtained using measurement at 20 for both CH 2 and carbon targets. The np scattering spectrum is deduced by subtracting the contribution of C(n,xp) reaction from the CH 2 measurement. The effective efficiency which includes the reaction loss effect in the CsI(Tl) scintillator is f(e), Φ is the relative neutron flux, and N is the number of the target nuclei. The differential np scattering cross section (dσ H /dω) is taken from NN-online [7]. In Eq. (3), the solid angle ΔΩ is given under an assumption that the target is treated as a point source. Finite target thickness causes non-negligible effects on both energy-loss and particle-loss of generated light ions. Thus, the measured spectrum is distorted in the low-energy region. To correct these effects, we used the TCORR code [8] which was developed previously in the data analysis of light-ion production measurements at 96 MeV with the Medley spectrometer. Figure 1. Accepted quasi mono-energetic neutron spectrum. Cross and solid circles are the measured data before and after the TOF gate cut, respectively. 4. Experimental results and their comparisons with PHITS calculations The measured DDXs of light ions are compared with the calculations by PHITS code [4] using the following nuclear reaction options: the high-energy nuclear data library (JENDL/HE-2007[3]), the quantum molecular dynamics (QMD) model, the modified QMD with coalescence model (MQMD)[9], and the intra-nuclear cascade (INC) model based on the Bertini model. The generalized evaporation model (GEM) is employed for the statistical decay process following the dynamical process described by QMD, MQMD, and INC. The accepted quasi mono-energetic neutron spectrum after TOF gate cut shown in Figure 1 is used as the input neutron spectrum in the PHITS calculation. Some results of oxygen and silicon are presented below. It should be noted that there is no comparison with the INC model calculation for deuterons and particles, because the present INC model cannot predict the production of such light clusters because the reaction mechanism is not considered.

Progress in Nuclear Science and Technology, Volume 4, 2014 571 4.1. Oxygen Figure 2 shows the result of proton production DDXs at four angles, 20, 60, 100, and 140. The calculation with JENDL/HE-2007 gives a fairly good description of the measured energy spectra except at 140. The PHITS calculations with three different reaction models (INC, QMD, and MQMD) underestimate the measurement in the high emission energy range at backward angles and in the intermediate energy range at 20. The result of deuteron production DDXs is shown in Figure 3. All three calculations with JENDL/HE-2007, QMD and MQMD fail to reproduce the experimental data satisfactorily. However, the MQMD calculation tends to enhance deuteron production over the wide emission energy range, compared with the original QMD calculation which underestimates largely the experimental data. Figure 4 shows the result of α production DDXs. Both the PHITS calculations with JENDL/HE-2007 and MQMD are in better agreement with the measurement than that with QMD. Figure 2. Comparison of the measured DDXs and the PHITS calculations for the O(n,xp) reaction. Figure 4. Comparison of the measured DDXs and the PHITS calculations for the O(n,x ) reaction. 4.2. Silicon The result of proton production DDXs for silicon is shown in Figure 5 at four angles, 20, 60, 100, and 140. The calculation with JENDL/HE-2007 gives a better description of the measured DDXs over the whole angles than the other calculations, except in the high energy region at 60. Both QMD and MQMD calculations reproduce the measured DDXs to the similar extent, whereas the INC calculation underestimates largely the measured DDXs over the whole emission energy range at backward angles. Figure 6 presents the result of deuteron production DDXs. There are obvious differences among three calculations with JENDL/HE-2007, QMD, and MQMD. The calculation with JENDL/HE-2007 shows a better agreement with the measured DDXs than those with QMD and MQMD over whole angles, except for overestimation seen in the high energy region at 60. It is found that the MQMD calculation improves remarkable underestimation shown in the QMD calculation over the wide emission energy range. However, it still underestimates the measurement above 40 MeV, particularly at 20. Figure 3. Comparison of the measured DDXs and the PHITS calculations for the O(n,xd) reaction. Figure 5. Comparison of the measured DDXs and the PHITS calculations for the Si(n,xp) reaction.

572 Y. Watanabe et al. Figure 7 shows the result of production DDXs. The PHITS calculation with MQMD leads to enhancement of production at high emission energies, and shows a better agreement with the measurement than those with QMD and JENDL/HE-2007 over the whole angular range. found that the modified QMD with a coalescence model (MQMD) can improve large underestimation seen in the high energy part of the original QMD calculation. Acknowledgements We would like to thank the staff of the The Svedberg Laboratory for their assistance during our experiments. U. T. expresses his gratitude to the Thailand Research Fund (TRF) for financial support under Project No.MGR5280165. This work was supported in part by the Semiconductor Technology Academic Research Center (STARC) joint research program. Figure 6. Comparison of the measured DDXs and the PHITS calculations for the Si(n,xd) reaction. Figure 7. Comparison of the measured DDXs and the PHITS calculations for the Si(n,x ) reaction. 5. Summary and conclusion The double-differential cross sections (DDXs) of light-ion production for carbon, oxygen and silicon were measured with 175 MeV quasi mono-energetic neutrons using the Medley spectrometer at the The Svedberg Laboratory (TSL) using the time-of-flight method. The measured DDXs for oxygen and silicon were compared with the PHITS calculations in order to perform the benchmark test of the high energy evaluated file, JENDL/HE-2007, and the reaction models used in PHITS. The calculation with JENDL/HE-2007 shows overall reasonable agreement with the present measurement. Discrepancies among the reaction models appear in the emission of complex particles (d, t, 3 He, and α). It was References [1] S. Hirayama, Y. Watanabe, M. Hayashi, Y. Naitou, T. Watanabe, R. Bevilacqua, J. Blomgren, L. Nilsson, A. Öhrn, M. Österlund, S. Pomp, A. Prokofiev, V. Simutkin, P.A. Söderström and U. Tippawan, Production of protons, deuterons, and tritons from carbon bombarded by 175 MeV quasi mono-energetic neutrons, Progress in Nuclear Science and Technology, 1 (2011), pp. 69-72. [2] S. Hirayama, Y. Watanabe, Y. Naitou, P. Andersson, R. Bevilacqua, C. Gustavsson, M. Österlund, S. Pomp, A. Prokofiev, V. Simutkin, H. Sjöstrand, A. Hjalmarsson, A. Prokofiev, M. Tesinsky and U. Tippawan, Light-ion Production from a Thin Silicon Target Bombarded by 175 MeV Quasi Mono-energetic Neutrons, J. Korean Phys. Soc., 59 (2011), pp. 1447-1450. [3] Y. Watanabe, K. Kosako, S. Kunieda, S. Chiba, R. Fujimoto, H. Harada, M. Kawai, F. Maekawa, T. Murata, H. Nakashima, K. Niita, N. Shigyo, S. Shimakawa, N. Yamamo and T. Fukahori, Status of JENDL High Energy File, J. Korean Phys. Soc., 59 (2011), pp. 1040-1045. [4] K. Niita, N. Matsuda, Y. Iwamoto, H. Iwase, T. Sato, H. Nakashima, Y. Sakamoto and L. Sihver, PHITS: Particle and Heavy Ion Transport Code System, version 2.23, JAEA-Data/Code 2010-022, Japan Atomic Energy Research Institute, (2010). [5] R. Bevilacqua, S. Pomp, V. Simutkin, M. Hayashi, S. Hirayama, Y. Naitou, Y. Watanabe, U. Tippawan, M. Tesinsky, G. Ban, J.-L. Lecouey, F.-R. Lecolley, N. Marie and Q. Hamel, Medley spectrometer for light ions in neutron-induced reactions at 175 MeV, Nucl. Instr. and Meth. in Phys. Res. A 646 (2011), pp. 100-107. [6] SRIM-2008, URL : http://www.srim.org/. [7] SAID Nucleon Nucleon scattering database, URL: http://gwdac.phys.gwu.edu [8] S. Pomp and U. Tippawan, An iterative procedure to obtain inverse response functions for thick-target correction of measured charged-particle spectra, Nucl. Inst. Meth. in Phys. Res. A 572 (2007), pp. 893-898. [9] Y. Watanabe and D.N. Kadrev, Extension of quantum molecular dynamics for production of

Progress in Nuclear Science and Technology, Volume 4, 2014 573 light complex particles in nucleon-induced reactions, Proc. ND2010, April 22-27, 2007, Nice, France, EDP Sciences (2008), pp. 1121-1124.