An Introduction to Disordered Elastic Systems. T. Giamarchi

Similar documents
Disordered Elastic s s y t s em e s stems T. Giamarchi h c / h/gr_gi hi/ amarc

Disordered Elastic Media

Functional RG for disordered elastic systems: what is it? what is it useful for?

Domain wall in a ferromagnetic Ising Co thin film

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Valence Bonds in Random Quantum Magnets

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 19 Mar 2002

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer

Article. Reference. Creep dynamics of elastic manifolds via exact transition pathways. KOLTON, Alejandro, et al.

Vortex lattice pinning in high-temperature superconductors.

Depinning transition for domain walls with an internal degree of freedom

Intermittence and roughening of periodic elastic media

Heterogeneous vortex dynamics in high temperature superconductors

Noise- and microwave experiments in moving CDW, Wigner crystals and vortex lattice

Vortex Liquid Crystals in Anisotropic Type II Superconductors

STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Koivisto, Juha; Rosti, J.; Alava, Mikko Creep of a fracture line in paper peeling

arxiv:cond-mat/ v1 [cond-mat.supr-con] 18 Oct 1996

Reduced dimensionality. T. Giamarchi

Dynamic creation and annihilation of metastable vortex phase as a source of excess noise

Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials

Criteria for the validity of Amontons Coulomb s law; Study of friction using dynamics of driven vortices of superconductor

Gauged Cosmic Strings and Superconductor Vortices

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Superconductivity: approaching the century jubilee

Phase Transitions and Renormalization:

Zhenhua Ning Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. (Dated: December 13, 2006) Abstract

Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France

Today: 5 July 2008 ٢

Coulomb Gap and Correlated Vortex Pinning in. Superconductors

Topological Defects in the Topological Insulator

L. E. Aragón et al. f pin

Physica B 407 (2012) Contents lists available at SciVerse ScienceDirect. Physica B. journal homepage:

Critical Behavior I: Phenomenology, Universality & Scaling

Collective Effects. Equilibrium and Nonequilibrium Physics

Universal Post-quench Dynamics at a Quantum Critical Point

Liquid Scattering X-ray School November University of California San Diego

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Driven Interfaces: From Flow to Creep Through Model Reduction

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Statistical Mechanics of Jamming

Flow of Glasses. Peter Schall University of Amsterdam

Effect of swift heavy ion irradiation on surface resistance of DyBa 2 Cu 3 O 7 δ thin films at microwave frequencies

Topological Defects inside a Topological Band Insulator

Koivisto, Juha; Illa Tortos, Xavier; Rosti, Jari; Alava, Mikko Line Creep in Paper Peeling

Vortex Imaging in Unconventional Superconductors

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 Jan 1998

Baruch Rosenstein Nat. Chiao Tung University

Vortex States in a Non-Abelian Magnetic Field

Correlated 2D Electron Aspects of the Quantum Hall Effect

arxiv: v2 [cond-mat.supr-con] 24 Aug 2007

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

Skyrmion glass in a 2D Heisenberg ferromagnet with quenched disorder

Phase Transitions in Relaxor Ferroelectrics

5 Topological defects and textures in ordered media

Zooming in on the Quantum Hall Effect

Various Facets of Chalker- Coddington network model

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Apr 1999

Critical Dynamics of The Superconductor Transition

Ginzburg-Landau theory of supercondutivity

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity

Slightly off-equilibrium dynamics

Mesoscopic conductance fluctuations and spin glasses

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

How spin, charge and superconducting orders intertwine in the cuprates

The glass transition as a spin glass problem

Supplementary Information for Enhanced critical current density. in the pressure-induced magnetic state of the high-temperature. superconductor FeSe

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Vortex glass scaling in Pb-doped Bi2223 single crystal

Deconfined Quantum Critical Points

Phase transitions and critical phenomena

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS

Part III: Impurities in Luttinger liquids

Hexatic and microemulsion phases in a 2D quantum Coulomb gas

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 25 Apr 2000

What is Quantum Transport?

Magnetic measurements (Pt. IV) advanced probes

MAGNETO-OPTIC IMAGING OF SINGLE VORTEX DYNAMICS IN NbSe 2 CRYSTALS

arxiv: v1 [cond-mat.supr-con] 11 Feb 2016

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

arxiv: v1 [cond-mat.supr-con] 23 Dec 2008

Dynamics of polar nanodomains and critical behavior of the uniaxial relaxor SBN

Entropic Crystal-Crystal Transitions of Brownian Squares K. Zhao, R. Bruinsma, and T.G. Mason

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

II.D Scattering and Fluctuations

Quantum Melting of Stripes

arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Jul 2005

Quantum Phase Transitions in Fermi Liquids

Inelastic X ray Scattering

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction

Features of the melting dynamics of a vortex lattice in a high-t c superconductor in the presence of pinning centers

Luttinger Liquid at the Edge of a Graphene Vacuum

Melting of heterogeneous vortex matter: The vortex nanoliquid

through a few examples Diffuse scattering Isabelle Mirebeau Laboratoire Léon Brillouin CE-Saclay Gif-sur Yvette, FRANCE

Physics 212: Statistical mechanics II Lecture XI

Transcription:

An Introduction to Disordered Elastic Systems T. Giamarchi

Many Physical Systems Interfaces Classical Crystals Quantum crystals

Interfaces Magnetic domain walls Ferroelectrics Contact line in wetting Epitaxial growth

Magnetic domain wall S. Lemerle et al. PRL 80 849 (98)

Ferroelectrics T. Tybell et al. PRL 89 097601 (02); P. Paruch et al., Annal. Physik. 13 95 (2004) Pb Pb 500 nm v / A Ec=E ¹

Classical Crystals Vortex Lattice Magnetic bubbles Charges spheres Charge density waves

Magneto-optics NbSe 2 Vortex lattice in type II superconductors Y. Baselevitch T. Johansen Oslo Bitter decoration NbSe 2 Scanning SQUID Nb C. Veauvy, D. Mailly, & K Hasselbach CRTBT Grenoble M. Marchevsky, J. Aarts, P.H. Kes (Kamerlingh Onnes Laboratorium, Leiden University)

Classical crystals Charged spheres: M. Saint Jean, GPS (Jussieu), 2000 Magnetic Bubbles: R. Seshadri et al.

Quantum Crystals Spin density waves Luttinger liquids (1D interacting electrons) Two dimensional Wigner crystal

Quantum systems V I Strong repulsion : Wigner crystal Quantum fluctuations instead (in addition to) thermal fluctuations

Wigner Crystal E.Y. Andrei, et al PRL 60 2765 (1988) R.L. Willett, et al. PRB 38 R7881 (1989)

C.-C. Li, et al. PRB 61 10905 (2000)

Basic Features : (Thermal, quantum) fluctuations `Elasticity Disorder

New type of physics Very controlled (e.g. magnetic field) Can pull on on the system Plunged in an external disorder

Questions Competition ``Order / ``Disorder Melting Glassyphases Statics Dynamics

Statics T. Klein et al. Nature 413, 404 (2001) P. Kim PRB 60 R12589 (99)

Dynamics Competition between disorder and elasticity: glassy properties Dynamics? v T 0 Large v: Nature of moving phase? Creep: v=???? Fc T=0 F Depinning: v ( ) β F - F c

Elastic description How to model

Elastic description of crystals 1 2 R 0 i : crystal u i : displacements n=2 d=3 vortices Elastic hamiltonian H = c ( q) u ( q) u ( q) dq αβ αβ α β

Limitations Interfaces (overhangs, bubbles) Periodic dislocations, etc. J. P Jamet, V. Repain M. Marchevsky, J. Aarts, P.H. Kes

What to measure (statics) r u B( r) = [ u( r) u(0)] 2 Positional order

S( q) = ρ( q) ρ( q) Structure Factor Fourier transform of: C( x) = e ik 0 Decorations u( r) ik0u(0) e K0 Neutrons q

Should we care about disorder?

S. Lemerle et al. PRL 80 849 (98) ς u L

Loss of translational order (Larkin) u( R ) a a H el = c u r 2 d d ( ( )) 2 r H dis = V ( r) ρ( r) d d r cr d a 2 a 2 d VR a / 2 ρ 0 R a c a V 2 2 a ρ d 2 0 1/(4 d ) No crystal below four spatial dimensions

Very difficult stat-mech problem Optimization : many solutions Glass Ε

Disorder (point like defects) ) ( ) ( ) ( ) ( 0 i i R i u x x dx x x V H = = δ ρ ρ + = K x u x ik e x u x )) ( ( 0 0 0 ) ( ) ( ρ ρ ρ ρ

Larkin Model H el = c u r 2 d d ( ( )) 2 r H dis = f ( r) u( r) d d r Exactly solvable B( r) = B th + c 2 r 4 d Exponential loss of translational order C( r) e r 4 d Not valid at large distance

ρ ik( x ( )) 0 e u x V( x) f ( x) u( x) K Not valid when : K MAX u 1 u( R c ) ξ New length Rc Larkin model has no metastable states and pinning Rc is related to pinning c R 2 c F c ξ

General Model + = K x u x ik d c x V e x d u H ) ( ) ( )) ( ( 0 2 2 ρ Classical systems x d x u x u K x d u c H d b a K b a a d a =, 0 2 ))) ( ) ( ( cos( ) ( ρ Quantum problem (disorder is time independent) ' '))), ( ), ( ( cos( ) (, 0 1 2 τ τ τ τ ρ d xd d x u x u K x d u c S d b a K b a a d a = +

How to solve? Two main methods : Variational approach Renormalization (functional RG)

Interfaces: only one length Larkin length u( R ) c ξ R < R c ; u(r) = R (4-d)/2 R > R c ; u(r) =?????

Interfaces H el = c u r 2 d d ( ( )) 2 r H dis = V ( r, u( r)) d V ( z, x) V ( z', x') = Dδ ( x x') δ ( z z') d r u u 2 d 2 cu L 1/ 2 d / 2 m / 2 RB RF L L 4 d 4+ m 4 d 4 m D L u Flory argument (mean field)

u RB ς L ζ : roughness exponent d = 1 ; ζ = 2/3 (random bond)

Crystals: Two crucial lengthscales Positional order Larkin length u( R ) a a u( R ) c ξ C(r) S(q) d R a Ra r 1/R a 1/R a q

Crystals Identical to interfaces? u» L ζ Above R c C r / e L ³ Exponential loss of positional order??

Naive vision of a D.E. crystal Loss of translational order beyond Ra (Wrong) argument: disorder induces dislocations at Ra Ra Crystal broken in crystallites of size Ra

Periodic systems: new universality class u ~ ς L u ~ Log( L 1/ ) 2

B(r) Larkin r d Random manifold r 2ν 4 Asymptotic A d log(r) Rc Ra r S(q) K0 q Bragg glass T.G. + P. Le Doussal Phys. Rev. B 52 1242 (1995)

T. Klein et al. Nature 413 404 (2001)

Dynamics

TAFF vs Creep v T 0 Fc T=0 F x TAFF : typical barrier Linear response v e β F

Creep Glassy system Slow dynamics determined by statics qty H el = c u r 2 d d ( ( )) 2 r = d H el Fu( r) d r cr d 2+2ς FR d + ζ L opt F ς 2 v e βu ( L opt ) U ( L opt ) F d + 2ς 2 ς 2 (Ioffe + Vinokur; Nattermann)

D.T. Fuchs et al. PRL 81 3944 (98) S. Lemerle et al. PRL 80 849 (98)

FRG: other scales than naive version of creep P. Chauve + T.G. + P. Le Doussal Phys. Rev. B 62 624 (2000). Molecular dynamics: (A. Kolton, A. Rosso, TG, cond-mat/0408284)

Wigner crystal (2DEG) R. Chitra, TG, P. Le Doussal PRL 80 3827 (1998); PRB 65 035312 (2001)

Questions

Ferroelectics P. Paruch et al., Annal. Physik. 13 95 (2004) v/ A Ec=E ¹

Roughness of the irradiated layer : (V. Repain et al. (Orsay)) 210 µm Pt/Co(0,5 nm)/pt/sio 2

References on DES Classical systems : G. Blatter et al. Rev. Mod. Phys 66 1125 (1994). T.G. + P. Le Doussal, In ``Spin Glasses and Random Fields'', ed. A.P. Young, World Scientific 1998, cond-mat/9705096. T. Nattermann and S. Scheidl Adv. Phys. 49 607 (2000) TG + S. Bhattacharya, In ``High Magnetic Fields, ed. C. Berthier et al., Springer 2002, cond-mat/0111052. Quantum systems : T.G. + E. Orignac In ``Theoretical Methods for Strongly Correlated Electrons", D. Senechal et al. ed, Springer (2004), cond-mat/0005220. T.G. In ``Quantum phenomena in mesoscopic systems" (Varenna school CLI) IOS Press (2003), cond-mat/0403531. And references therein..