Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Similar documents
Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Wednesday 3 June 2015 Morning Time: 1 hour 30 minutes

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes

Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Paper Reference R. Mechanics M1 Advanced/Advanced Subsidiary. Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Friday 15 January 2010 Afternoon Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

physicsandmathstutor.com Paper Reference Mechanics M1 Advanced/Advanced Subsidiary Friday 11 January 2008 Morning Time: 1 hour 30 minutes

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary

6677 Edexcel GCE Mechanics M1 (New Syllabus) Advanced/Advanced Subsidiary Friday 12 January 2001 Afternoon Time: 1 hour 30 minutes

Paper Reference. Advanced/Advanced Subsidiary. Thursday 7 June 2007 Morning Time: 1 hour 30 minutes. Mathematical Formulae (Green)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary. Friday 22 May 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary

Paper Reference. Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary

International Advanced Level Further Pure Mathematics F2 Advanced/Advanced Subsidiary

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Mechanics M1 Advanced Subsidiary

Advanced/Advanced Subsidiary

Further Pure Mathematics F2

Mechanics M1 Advanced Subsidiary

Mechanics M1 Advanced/Advanced Subsidiary

Further Pure Mathematics F1

Further Pure Mathematics F2

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE. Mechanics M1 Advanced Subsidiary. Specimen Paper Time: 1 hour 30 minutes

Paper Reference. Mechanics M3 Advanced/Advanced Subsidiary. Monday 10 June 2013 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary

Further Pure Mathematics FP1

Time: 1 hour 30 minutes

Core Mathematics C12

PhysicsAndMathsTutor.com. International Advanced Level Statistics S2 Advanced/Advanced Subsidiary

Mechanics M3 Advanced/Advanced Subsidiary

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Mechanics M1 Advanced Subsidiary

physicsandmathstutor.com Paper Reference Mechanics M1 Advanced/Advanced Subsidiary Thursday 12 January 2006 Afternoon Time: 1 hour 30 minutes

Core Mathematics C3. You must have: Mathematical Formulae and Statistical Tables (Pink)

M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision,

Mechanics M1 Advanced Subsidiary

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Core Mathematics C4. You must have: Mathematical Formulae and Statistical Tables (Pink)

PhysicsAndMathsTutor.com. Core Mathematics C4. You must have: Mathematical Formulae and Statistical Tables (Pink)

Core Mathematics C34

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Core Mathematics C12

Paper Reference. Advanced/Advanced Subsidiary. Tuesday 7 June 2005 Afternoon Time: 1 hour 30 minutes. Mathematical Formulae (Lilac or Green)

Mechanics M2 Advanced Subsidiary

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Core Mathematics C1. You must have: Mathematical Formulae and Statistical Tables (Pink) Calculators may NOT be used in this examination.

Core Mathematics C12

Core Mathematics C12

Decision Mathematics D1

Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary

Core Mathematics C1. You must have: Mathematical Formulae and Statistical Tables (Pink) Calculators may NOT be used in this examination.

Core Mathematics C12

Core Mathematics C2. You must have: Mathematical Formulae and Statistical Tables (Pink)

Paper Reference. Mechanics M2 Advanced/Advanced Subsidiary. Friday 29 January 2010 Morning Time: 1 hour 30 minutes

Mathematics (JAN11MM1B01) General Certificate of Education Advanced Subsidiary Examination January Unit Mechanics 1B TOTAL

International Advanced Level Core Mathematics C34 Advanced

Created by T. Madas. Candidates may use any calculator allowed by the Regulations of the Joint Council for Qualifications.

Core Mathematics C34

Further Pure Mathematics FP1

Mechanics M1 Advanced/Advanced Subsidiary

Core Mathematics C12

Core Mathematics C12

Mechanics M3 Advanced/Advanced Subsidiary

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Core Mathematics C12

Core Mathematics C4. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Core Mathematics C34

Mechanics M2 Advanced Subsidiary

Pearson Edexcel GCE Core Mathematics C1 Advanced Subsidiary. Calculators may NOT be used in this examination.

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Mathematics Advanced Subsidiary Paper 2: Statistics and Mechanics

Paper Reference. Mechanics M3 Advanced/Advanced Subsidiary. Friday 29 January 2010 Morning Time: 1 hour 30 minutes

PhysicsAndMathsTutor.com. Core Mathematics C1. You must have: Mathematical Formulae and Statistical Tables (Pink)

Decision Mathematics D1

PhysicsAndMathsTutor.com. International Advanced Level Statistics S1 Advanced/Advanced Subsidiary

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Pearson Edexcel GCE Decision Mathematics D2. Advanced/Advanced Subsidiary

Decision Mathematics D1

Paper Reference. Paper Reference(s) 6679/01 Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary

Transcription:

Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Mechanics M1 Advanced/Advanced Subsidiary Candidate Number Monday 25 January 2016 Afternoon Time: 1 hour 30 minutes You must have: Mathematical Formulae and Statistical Tables (Blue) Paper Reference WME01/01 Total Marks P46959A 2016 Pearson Education Ltd. 1/1/1/1/1/ Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. Instructions Use black ink or ball-point pen. If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used. Fill in the boxes at the top of this page with your name, centre number and candidate number. Answer all questions and ensure that your answers to parts of questions are clearly labelled. Answer the questions in the spaces provided there may be more space than you need. You should show sufficient working to make your methods clear. Answers without working may not gain full credit. Whenever a numerical value of g is required, take g = 9.8 m s 2, and give your answer to either two significant figures or three significant figures. When a calculator is used, the answer should be given to an appropriate degree of accuracy. Information The total mark for this paper is 75. The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. Advice Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end. *P46959A0124* Turn over

1. A truck of mass 2400 kg is pulling a trailer of mass M kg along a straight horizontal road. The tow bar, connecting the truck to the trailer, is horizontal and parallel to the direction of motion. The tow bar is modelled as being light and inextensible. The resistance forces acting on the truck and the trailer are constant and of magnitude 400 N and 200 N respectively. The acceleration of the truck is 0.5 m s 2 and the tension in the tow bar is 600 N. (a) Find the magnitude of the driving force of the truck. (b) Find the value of M. (c) Explain how you have used the fact that the tow bar is inextensible in your calculations. (1) (3) (3) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 2 *P46959A0224*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 1 continued (Total 7 marks) Q1 *P46959A0324* 3 Turn over

2. Two particles P and Q are moving in opposite directions along the same horizontal straight line. Particle P is moving due east and particle Q is moving due west. Particle P has mass 2m and particle Q has mass 3m. The particles collide directly. Immediately before the collision, the speed of P is 4u and the speed of Q is u. The magnitude of the impulse in the collision is 33 5 mu. (a) Find the speed and direction of motion of P immediately after the collision. (4) (b) Find the speed and direction of motion of Q immediately after the collision. (4) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 4 *P46959A0424*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 2 continued (Total 8 marks) Q2 *P46959A0524* 5 Turn over

3. Figure 1 A boy is pulling a sledge of mass 8 kg in a straight line at a constant speed across rough horizontal ground by means of a rope. The rope is inclined at 30 to the ground, as shown in Figure 1. The coefficient of friction between the sledge and the ground is 1 5. By modelling the sledge as a particle and the rope as a light inextensible string, find the tension in the rope. (8) 30 DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 6 *P46959A0624*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 3 continued (Total 8 marks) Q3 *P46959A0724* 7 Turn over

4. A small stone is projected vertically upwards from the point O and moves freely under gravity. The point A is 3.6 m vertically above O. When the stone first reaches A, the stone is moving upwards with speed 11.2 m s 1. The stone is modelled as a particle. (a) Find the maximum height above O reached by the stone. (b) Find the total time between the instant when the stone was projected from O and the instant when it returns to O. (5) (c) Sketch a velocity-time graph to represent the motion of the stone from the instant when it passes through A moving upwards to the instant when it returns to O. Show, on the axes, the coordinates of the points where your graph meets the axes. (4) (4) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 8 *P46959A0824*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 4 continued *P46959A0924* 9 Turn over

Question 4 continued DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 10 *P46959A01024*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 4 continued (Total 13 marks) Q4 *P46959A01124* 11 Turn over

5. A 2.2 m 4 m G Figure 2 A non-uniform rod AB has length 4 m and weight 120 N. The centre of mass of the rod is at the point G where AG = 2.2 m. The rod is suspended in a horizontal position by two vertical light inextensible strings, one at each end, as shown in Figure 2. A particle of weight 40 N is placed on the rod at the point P, where AP = x metres. The rod remains horizontal and in equilibrium. (a) Find, in terms of x, (i) the tension in the string at A, (ii) the tension in the string at B. Either string will break if the tension in it exceeds 84 N. (b) Find the range of possible values of x. B (6) (4) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 12 *P46959A01224*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 5 continued *P46959A01324* 13 Turn over

Question 5 continued DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 14 *P46959A01424*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 5 continued (Total 10 marks) Q5 *P46959A01524* 15 Turn over

6. [In this question i and j are horizontal unit vectors due east and due north respectively and position vectors are given relative to a fixed origin.] At 2 pm, the position vector of ship P is (5i 3j) km and the position vector of ship Q is (7i + 5j)km. (a) Find the distance between P and Q at 2 pm. Ship P is moving with constant velocity (2i + 5j)kmh 1 and ship Q is moving with constant velocity ( 3i 15j)kmh 1. (b) Find the position vector of P at time t hours after 2 pm. (c) Find the position vector of Q at time t hours after 2 pm. (d) Show that Q will meet P and find the time at which they meet. (e) Find the position vector of the point at which they meet. (3) (2) (1) (5) (2) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 16 *P46959A01624*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 6 continued *P46959A01724* 17 Turn over

Question 6 continued DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 18 *P46959A01824*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 6 continued (Total 13 marks) Q6 *P46959A01924* 19 Turn over

7. P (2 kg) d metres Figure 3 Q (5 kg) A particle P of mass 2 kg is attached to one end of a light inextensible string. A particle Q of mass 5 kg is attached to the other end of the string. The string passes over a small smooth light pulley. The pulley is fixed at a point on the intersection of a rough horizontal table and a fixed smooth inclined plane. The string lies along the table and also lies in a vertical plane which contains a line of greatest slope of the inclined plane. This plane is inclined to the horizontal at an angle, where tan = 3. Particle P is at rest on the table, 4 a distance d metres from the pulley. Particle Q is on the inclined plane with the string taut, as shown in Figure 3. The coefficient of friction between P and the table is 1 4. The system is released from rest and P slides along the table towards the pulley. Assuming that P has not reached the pulley and that Q remains on the inclined plane, (a) write down an equation of motion for P, (b) write down an equation of motion for Q, (c) (i) find the acceleration of P, (ii) find the tension in the string. When P has moved a distance 0.5 m from its initial position, the string breaks. Given that P comes to rest just as it reaches the pulley, (d) find the value of d. (2) (2) (5) (7) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 20 *P46959A02024*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 7 continued *P46959A02124* 21 Turn over

Question 7 continued DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 22 *P46959A02224*

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Question 7 continued *P46959A02324* 23 Turn over

Question 7 continued (Total 16 marks) TOTAL FOR PAPER: 75 MARKS END Q7 DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 24 *P46959A02424*