(joint work with Atsushi Takahashi) Liverpool, June 21, 2012

Similar documents
arxiv: v1 [math.ag] 8 Mar 2010

On the orbifold Euler characteristics of dual invertible polynomials with non-abelian symmetry groups

Berglund Hübsch Krawitz mirrors via Shioda maps

INTRODUCTION TO THE LANDAU-GINZBURG MODEL

Geometry of moduli spaces

Arithmetic Mirror Symmetry

Chern numbers and Hilbert Modular Varieties

CGP INTENSIVE LECTURE SERIES ATSUSHI TAKAHASHI

HODGE NUMBERS OF COMPLETE INTERSECTIONS

Isomorphisms of Landau-Ginzburg B-Models

Betti numbers of abelian covers

FAKE PROJECTIVE SPACES AND FAKE TORI

A note on distinguished bases of singularities

Milnor Fibers of Line Arrangements

Mordell-Weil ranks of Jacobians of isotrivial families of plane curves

SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS

arxiv: v1 [math.nt] 15 Sep 2009

The derived category of a GIT quotient

Superspecial curves of genus 4 in small charactersitic 8/5/2016 1

Overview of classical mirror symmetry

Geometry of the Calabi-Yau Moduli

MODULI SPACES OF CURVES

Remarks on the Milnor number

Homological Mirror Symmetry and VGIT

1.4 Solvable Lie algebras

Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points

Period Domains. Carlson. June 24, 2010

HODGE GENERA OF ALGEBRAIC VARIETIES, II.

Kähler configurations of points

Calabi-Yau Geometry and Mirror Symmetry Conference. Cheol-Hyun Cho (Seoul National Univ.) (based on a joint work with Hansol Hong and Siu-Cheong Lau)

Monomial equivariant embeddings of quasitoric manifolds and the problem of existence of invariant almost complex structures.

Math 121 Homework 5: Notes on Selected Problems

Introduction To K3 Surfaces (Part 2)

Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture

Handlebody Decomposition of a Manifold

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109

AN EXAMPLE OF BERGLUND-HÜBSCH MIRROR SYMMETRY FOR A CALABI-YAU COMPLETE INTERSECTION

The weight filtration for real algebraic varieties

Zeta functions of buildings and Shimura varieties

Fundamental Lemma and Hitchin Fibration

On the Rothenberg Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E 8

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

Du Val Singularities

Generalized Tian-Todorov theorems

Vanishing theorems and holomorphic forms

Diangle groups. by Gunther Cornelissen

K3 Surfaces and Lattice Theory

SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY

Parameterizing orbits in flag varieties

Mirror Symmetry: Introduction to the B Model

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS

Riemann surfaces. Paul Hacking and Giancarlo Urzua 1/28/10

AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11

Morse theory and stable pairs

The Geometrization Theorem

Cohomology jump loci of quasi-projective varieties

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

Manoj K. Keshari 1 and Satya Mandal 2.

On complete degenerations of surfaces with ordinary singularities in

1 Generalized Kummer manifolds

Irrationality proofs, moduli spaces, and dinner parties

Leonard pairs and the q-tetrahedron algebra. Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger

BI-LIPSCHITZ GEOMETRY OF WEIGHTED HOMOGENEOUS SURFACE SINGULARITIES

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

The geometry of Landau-Ginzburg models

REGULAR TRIPLETS IN COMPACT SYMMETRIC SPACES

arxiv: v1 [math.ag] 13 Mar 2019

DIRECT SUM DECOMPOSABILITY OF POLYNOMIALS AND FACTORIZATION OF ASSOCIATED FORMS

Mirror symmetry for K3 surfaces

The structure of algebraic varieties

MAKSYM FEDORCHUK. n ) = z1 d 1 zn d 1.

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY

ON GRADED MORITA EQUIVALENCES FOR AS-REGULAR ALGEBRAS KENTA UEYAMA

arxiv: v1 [math.dg] 4 Feb 2013

On conjugacy classes of the Klein simple group in Cremona group

Chapter 4. Inverse Function Theorem. 4.1 The Inverse Function Theorem

A TASTE OF TWO-DIMENSIONAL COMPLEX ALGEBRAIC GEOMETRY. We also have an isomorphism of holomorphic vector bundles

Gauged Linear Sigma Model in the Geometric Phase

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

A formality criterion for differential graded Lie algebras

An overview of D-modules: holonomic D-modules, b-functions, and V -filtrations

On the closures of orbits of fourth order matrix pencils

arxiv:alg-geom/ v2 12 Mar 1998

Classification of algebras with minimal quadratic growth of identities

Hyperkähler geometry lecture 3

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Asymptotic of Enumerative Invariants in CP 2

arxiv: v2 [math.at] 17 Sep 2009

David Eklund. May 12, 2017

Grothendieck ring of varieties I.

One-dimensional families of Riemann surfaces with 4g+4 autom

Large Automorphism Groups of Algebraic Curves in Positive Characteristic. BMS-LMS Conference

arxiv:math/ v2 [math.ag] 16 May 2003

Control Systems. Linear Algebra topics. L. Lanari

Mirror symmetry, Langlands duality and the Hitchin system I

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction

Monodromy of the Dwork family, following Shepherd-Barron X n+1. P 1 λ. ζ i = 1}/ (µ n+1 ) H.

FUNDAMENTAL GROUPS. Alex Suciu. Northeastern University. Joint work with Thomas Koberda (U. Virginia) arxiv:

Dimension. Eigenvalue and eigenvector

Linear systems and Fano varieties: introduction

Transcription:

(joint work with Atsushi Takahashi) Institut für Algebraische Geometrie Leibniz Universität Hannover Liverpool, June 21, 2012

Wall 75, C.T.C. Wall: Kodaira and an extension of. Compositio Math. 56, 3 77 (1985).

Wall 75, C.T.C. Wall: Kodaira and an extension of. Compositio Math. 56, 3 77 (1985). C.T.C. Wall: A note on symmetry of. Bull. London Math. Soc. 12, 169 175 (1980)

Classification of f (x) = f (x 1,..., x n ) complex polynomial with f (0) = 0 and isolated ( singularity at 0 C n ), i.e. grad f (x) = f x 1 (x),..., f x n (x) 0 for x 0, x < ε. X := f 1 (0) hypersurface singularity V. I. Arnold (1972, 1973, 1975): 0-modal (simple) : ADE unimodal : simple elliptic Tp,q,r : f (x, y, z) = x p + y q + z r + axyz, a C, 1 p + 1 q + 1 r < 1 (cusp ) 14 exceptional bimodal 8 bimodal series 14 exceptional

(1) 14 exceptional unimodal related to Schwarz triangular groups Γ(α 1, α 2, α 3 ) PSL(2; R) Dol(X ) = (α 1, α 2, α 3 ), π α 1, π α 2, π α 3 angles of hyperbolic triangle Gab(X ) = (γ 1, γ 2, γ 3 ), Coxeter-Dynkin diagram : X X Dol(X ) = Gab(X ) Gab(X ) = Dol(X )

(2) Name Dol(X ) Gab(X ) Dual E 12 2, 3, 7 2, 3, 7 E 12 E 13 2, 4, 5 2, 3, 8 Z 11 E 14 3, 3, 4 2, 3, 9 Q 10 Z 11 2, 3, 8 2, 4, 5 E 13 Z 12 2, 4, 6 2, 4, 6 Z 12 Z 13 3, 3, 5 2, 4, 7 Q 11 Q 10 2, 3, 9 3, 3, 4 E 14 Q 11 2, 4, 7 3, 3, 5 Z 13 Q 12 3, 3, 6 3, 3, 6 Q 12 W 12 2, 5, 5 2, 5, 5 W 12 W 13 3, 4, 4 2, 5, 6 S 11 S 11 2, 5, 6 3, 4, 4 W 13 S 12 3, 4, 5 3, 4, 5 S 12 U 12 4, 4, 4 4, 4, 4 U 12

E.-Wall extension Wall (1983): Classification of unimodal isolated of complete intersections (ICIS) 8 bimodal series 8 triangle ICIS in C 4 quasihomogeneous heads related to quadrilateral groups Γ[α 1, α 2, α 3, α 4 ] Series Head Dol(X ) Gab(X ) Dual J 3,k J 3,0 2, 2, 2, 3 2, 3, 10 J 9 Z 1,k Z 1,0 2, 2, 2, 4 2, 4, 8 J 10 Q 2,k Q 2,0 2, 2, 2, 5 3, 3, 7 J 11 W 1,k W 1,0 2, 3, 2, 3 2, 6, 6 K 10 W 1,k 2, 2, 3, 3 2, 5, 7 L 10 S 1,k S 1,0 2, 3, 2, 4 3, 5, 5 K 11 S 1,k 2, 2, 3, 4 3, 4, 6 L 11 U 1,k U 1,0 2, 3, 3, 3 4, 4, 5 M 11

(1) A quasihomogeneous polynomial f in n variables is invertible : f (x 1,..., x n ) = n n a i x E ij j i=1 j=1 for some coefficients a i C and for a matrix E = (E ij ) with non-negative integer entries and with det E 0. 6 1 0 Ex.: f (x, y, z) = x 6 y + y 3 + z 2, E = 0 3 0 0 0 2 For simplicity: a i = 1 for i = 1,..., n, det E > 0. An invertible quasihomogeneous polynomial f is non-degenerate if it has an isolated singularity at 0 C n.

(2) f is quasihomogeneous, i.e. there exist weights w 1,..., w n Q such that f (λ w 1 x 1,..., λ wn x n ) = λf (x 1,..., x n ) for all λ C. Weights (w 1,..., w n ) defined by w 1 1 E. =. 1 w n Kreuzer-Skarke: A non-degenerate invertible polynomial f is a (Thom-Sebastiani) sum of x p1 1 x 2 + x p2 2 x 3 +... + x pm 1 m 1 x m + xm pm (chain type; m 1); x p 1 1 x 2 + x p2 2 x 3 +... + x pm 1 m 1 x m + xm pm x 1 (loop type; m 2).

Berglund-Hübsch transpose The Berglund-Hübsch transpose f T is f T (x 1,..., x n ) = n n a i i=1 j=1 x E ji j. 6 0 0 Ex.: E T = 1 3 0, f T (x, y, z) = x 6 + xy 3 + z 2 0 0 2

Group of diagonal symmetries G f of f { } G f = (λ 1,..., λ n ) (C ) n f (λ 1 x 1,..., λ n x n ) = f (x 1,..., x n ) finite group g 0 = (e 2πiw 1,..., e 2πiwn ) G f exponential grading operator, G 0 := g 0 G f. Berglund-Henningson: G G f subgroup (G T ) T = G G T G T 0 G T := Hom(G f /G, C ) f = {1} = G f T SL n(c) dual group

General assumption: n = 3, f (x, y, z) non-degenerate invertible polynomial such that f T (x, y, z) is also non-degenerate, both have singularity at 0 Aim: [ET, Compositio Math. 147 (2011)] (f, G f ) (f T, {1}) (G f = G 0 ) [ET, arxiv: 1103.5367, Int. Math. Res. Not.] Generalization: G 0 G G f {1} G T G T 0 (f, G) (f T, G T ) E.-Wall extension

Assumption: G 0 G G f Consider quotient stack {1} G Ĝ C 1 C (f,g) := [ ] f 1 (0)\{0} /Ĝ Deligne Mumford stack (smooth projective curve with finite number of isotropic points) g (f,g) := genus [C (f,g) ]

Definition : A (f,g) = (α 1,..., α r ) orders of isotropy groups of G Theorem G = G f g (f,g) = 0, r 3. A (f,gf ) = (α 1, α 2, α 3 ), α i order of isotropy of point P i. Notation: u v := (u,..., u) }{{} v times Theorem H i G f minimal subgroup with G H i, Stab(P i ) H i, i = 1, 2, 3. Then ( α ) A (f,g) = i H i /G G f /H i, i = 1, 2, 3, where one omits numbers equal to 1.

H p,q st (C (f,g)) Chen-Ruan orbifold cohomology Definition e st (C (f,g) ) := ( 1) p q dim C H p,q st p,q Q 0 stringy Euler number Proposition e st (C (f,g) ) = 2 2g (f,g) + (C (f,g)). r (α i 1) i=1

Assumption: {1} G G f SL 3 (C) For simplicity: f not simple or simple elliptic g G order r g = diag(e 2πia 1/r, e 2πia 2/r, e 2πia 2/r ) with 0 a i < r. age(g) := 1 r (a 1 + a 2 + a 3 ) Z j G := {g G age(g) = 1, g fixes only 0} Theorem f (x, y, z) xyz F (x, y, z) = x γ 1 +y γ 2 +z γ 3 axyz, a C, cusp singularity of type T γ 1,γ 2,γ 3

Definition of the pair (f, {1}): Γ (f,{1}) := (γ 1, γ 2, γ 3 ) Proposition Above coordinate change is G-equivariant. In particular, F G-invariant. Definition K i G maximal subgroup fixing i-th coordinate. ( γ ) Γ (f,g) = (γ 1,..., γ s ) := i G/K i K i, i = 1, 2, 3, where one omits numbers equal to 1. of the pair (f, G).

f (x 1,..., x n ), f : C n C, X f := f 1 (1) Milnor fibre mixed Hodge structure on H n 1 (X f, C) (Steenbrink) with automorphism c : H n 1 (X f, C) H n 1 (X f, C) given by monodromy, c = c ss c unip, H n 1 (X f, C) λ eigenspace of c ss for eigenvalue λ H p,q f := 0 p + q n Gr p F H n 1 (X f, C) 1 p + q = n, p Z Gr [p] F H n 1 (X f, C) e 2πip p + q = n, p / Z. {q Q H p,q f 0} of f. φ(f ; t) := q Q (t e 2πiq ) dim C H p,q f characteristic polynomial µ f = deg φ(f ; t) Milnor number

G-equivariant Action of G G-equivariant version Wall: G-equivariant Milnor number µ (f,g) G-equivariant G-equivariant characteristic polynomial φ (f,g) (t)

of a cusp singularity Now F (x, y, z) = x γ 1 + y γ 2 + z γ 3 axyz cusp singularity : { 1, 1 γ 1 + 1, 2 γ 1 + 1,..., γ 1 1 γ 1 + 1, 1 γ 2 + 1, 2 γ 2 + 1,...,..., γ 2 1 γ 2 + 1, 1 γ 3 + 1, 2 γ 3 φ (F,{1}) (t) = (t 1) 2 + 1,..., γ 3 1 γ 3 3 i=1 t γ i 1 t 1 } + 1, 2. G-equivariant characteristic polynomial and Milnor number: φ (F,G) (t) = (t 1) 2 2j G µ (F,G) = 2 2j G + s i=1 t γ i 1 t 1 s (γ i 1) i=1

Theorem A (f,gf ) = Γ (f T,{1}), A (f T,G f T ) = Γ (f,{1}). Corollary (G 0 = G f ). Theorem G 0 G G f, f T (x, y, z) xyz F (x, y, z) A (f,g) = Γ (f T,G T ), e st (C (f,g) ) = µ (F,G T ), g (f,g) = j G T Proof. K i = H T i for a suitable ordering of the isotropic points P 1, P 2, P 3.

F (x, y, z) f T (x, y, z) xyz cusp singularity Var (F,G T ) := Theorem = p,q Q s ( 1) p+q ( q 3 2) 2 h p,q (F, G T ) γ i 1 i=1 k=1 µ (F,G T ) = 2 2j G T + χ (F,G T ) := 2 2j G T + ( k 1 ) 2 γ i 2 s (γ i 1) i=1 s i=1 ( ) 1 1 γ i Var (F,G T ) = 1 12 µ (F,G T ) + 1 6 χ (F,G T ).

C = C (f,g) orbifold curve, smooth projective curve of genus j G T, with isotropic points of orders γ 1,..., γ s µ (F,G T ) = e st (C) stringy Euler number χ (F,G T ) = deg c 1 (C) orbifold Euler characteristic Compare with [Libgober-Wood, Borisov]: Theorem Let X be a smooth compact Kähler manifold of dimension n. Then ( ( 1) p+q q n ) 2 h p,q (X ) 2 p,q Z = 1 12 n χ(x ) + 1 6 X c 1 (X ) c n 1 (X )

Spectra of orbifold LG- f (x 1,..., x n ) invertible polynomial, G G f SL n (C) ĉ := n 2 Theorem n w i. Var (f,g) = ( ( 1) p+q q n ) 2 h p,q (f, G) = 1 2 12ĉ µ (f,g). p,q Q [ET, arxiv: 1203.3947] i=1

14 exceptional unimodal Name α 1, α 2, α 3 f γ 1, γ 2, γ 3 Dual E 12 2, 3, 7 x 2 + y 3 + z 7 2, 3, 7 E 12 E 13 2, 4, 5 x 2 + y 3 + yz 5 2, 3, 8 Z 11 E 14 3, 3, 4 x 3 + y 2 + yz 4 2, 3, 9 Q 10 Z 11 2, 3, 8 x 2 + zy 3 + z 5 2, 4, 5 E 13 Z 12 2, 4, 6 x 2 + zy 3 + yz 4 2, 4, 6 Z 12 Z 13 3, 3, 5 x 2 + xy 3 + yz 3 2, 4, 7 Q 11 Q 10 2, 3, 9 x 3 + zy 2 + z 4 3, 3, 4 E 14 Q 11 2, 4, 7 x 2 y + y 3 z + z 3 3, 3, 5 Z 13 Q 12 3, 3, 6 x 3 + zy 2 + yz 3 3, 3, 6 Q 12 W 12 2, 5, 5 x 5 + y 2 + yz 2 2, 5, 5 W 12 W 13 3, 4, 4 x 2 + xy 2 + yz 4 2, 5, 6 S 11 S 11 2, 5, 6 x 2 y + y 2 z + z 4 3, 4, 4 W 13 S 12 3, 4, 5 x 3 y + y 2 z + z 2 x 3, 4, 5 S 12 U 12 4, 4, 4 x 4 + zy 2 + yz 2 4, 4, 4 U 12

E.-Wall extension of Bimodal series versus ICIS in C 4 A (f,g0 ) f Γ (f,{1}) BH-dual J 3,0 2, 2, 2, 3 x 6 y + y 3 + z 2 2, 3, 10 Z 13 Z 1,0 2, 2, 2, 4 x 5 y + xy 3 + z 2 2, 4, 8 Z 1,0 Q 2,0 2, 2, 2, 5 x 4 y + y 3 + xz 2 3, 3, 7 Z 17 W 1,0 2, 2, 3, 3 x 6 + y 2 + yz 2 2, 6, 6 W 1,0 S 1,0 2, 2, 3, 4 x 5 + xy 2 + yz 2 3, 5, 5 W 17 U 1,0 2, 3, 3, 3 x 3 + xy 2 + yz 3 3, 4, 6 U 1,0 A (f T,G f T ) f T Γ (f T,G T 0 ) ICIS Z 13 2, 3, 10 x 6 + xy 3 + z 2 2, 2, 2, 3 J 9 Z 1,0 2, 4, 8 x 5 y + xy 3 + z 2 2, 2, 2, 4 J 10 Z 17 3, 3, 7 x 4 z + xy 3 + z 2 2, 2, 2, 5 J 11 W 1,0 2, 6, 6 x 6 + y 2 z + z 2 2, 2, 3, 3 K 10 W 17 3, 5, 5 x 5 y + y 2 z + z 2 2, 2, 3, 4 K 11 U 1,0 3, 4, 6 x 3 y + y 2 z + z 3 2, 3, 3, 3 M 11

Example f of table, G = G 0 G f index 2. G0 T = Z/2Z acting on C 3 by Invariant polynomials: (x, y, z) ( x, y, z) W := y 2, X := x 2, Y := xy,, Z := z { XW Y 2 = 0 f T (W, X, Y, Z) = 0 } yields equations of ICIS in C 4 in five cases. Example f (x, y, z) = x 6 y + y 3 + z 2, f T (x, y, z) = x 6 + xy 3 + z 2 = X 3 + YW + Z 2

Equations of ICIS f T { (f T ) 1 (0)/G0 T Dual J 3,0 x 6 + xy 3 + z 2 XW Y 2 } X 3 + YW + Z 2 J 9 { Z 1,0 x 5 y + xy 3 + z 2 XW Y 2 } X 2 Y + YW + Z 2 J 10 { Q 2,0 x 4 z + xy 3 + z 2 XW Y 2 } X 2 Z + YW + Z 2 J 11 { W 1,0 x 6 + y 2 z + z 2 XW Y 2 } X 3 + WZ + Z 2 K 10 { S 1,0 x 5 y + y 2 z + z 2 XW Y 2 } X 2 Y + WZ + Z 2 K 11

Geometric interpretation of? and for n > 3? Study with symmetries!

Thank you!