Effects of pre-reversal enhancement of E B drift on the latitudinal extension of plasma bubble in Southeast Asia

Similar documents
Effects of Pre-reversal Enhancement of E B drift on the Latitudinal Extension of Plasma Bubble in Southeast Asia

3-2-4 Relationship between Equatorial Electrojet Variation and Spread-F Occurrence

On the sources of day-to-day variability in the occurrence of equatorial plasma bubbles: An analysis using the TIEGCM

A statistical study of equatorial plasma bubble observed by GPS ROTI measurement along 100 o E 118 o E longitude over the years

Occurrence and onset conditions of postsunset equatorial spread F at Jicamarca during solar minimum and maximum

3-2-6 New Observational Deployments for SEALION Airglow Measurements Using All-Sky Imagers

UNCLASSIFIED/UNLIMITED

A New Equatorial Plasma Bubble Prediction Capability

On the occurrence of postmidnight equatorial F region irregularities during the June solstice

VHF radar observations of post-midnight F-region field-aligned irregularities over Indonesia during solar minimum

Observations and model calculations of the F 3 layer in the Southeast Asian equatorial ionosphere

On the seasonal variations of the threshold height for the occurrence of equatorial spread F during solar minimum and maximum years

Equinoctial asymmetry in the occurrence of equatorial spread-f over Indian longitudes during moderate to low solar activity period

Characteristics of the storm-induced big bubbles (SIBBs)

Plasma blobs and irregularities concurrently observed by ROCSAT-1 and Equatorial Atmosphere Radar

Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia

Statistics of GPS scintillations over South America at three levels of solar activity

The correlation of longitudinal/seasonal variations of evening equatorial pre-reversal drift and of plasma bubbles

Preface Climatology of thermosphere-ionosphere and plasmasphere

Investigation of low latitude E and valley region irregularities: Their relationship to equatorial plasma bubble bifurcation

Diurnal and seasonal variation of GPS-TEC during a low solar activity period as observed at a low latitude station Agra

Features of the F3 layer occurrence over the equatorial location of Trivandrum

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, A03333, doi: /2011ja017419, 2012

On the occurrence of the equatorial F-region irregularities during solar minimum using radio occultation measurements

Modelling the zonal drift of equatorial plasma irregularities and scintillation. Chaosong Huang Air Force Research Laboratory

Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers

Variations of Ion Drifts in the Ionosphere at Low- and Mid- Latitudes

Usage of IGS TEC Maps to explain RF Link Degradations by Spread-F, observed on Cluster and other ESA Spacecraft

Shin-Yi Su 1,2*, Chung Lung Wu 2 and Chao Han Liu 3

The Effects of Magnetic Storm Phases on F-Layer Irregularities from Auroral to Equatorial Latitudes

PUBLICATIONS. Journal of Geophysical Research: Space Physics

Evolution of equatorial ionospheric plasma bubbles and formation of broad plasma depletions measured by the C/NOFS satellite during deep solar minimum

Contrasting features of the F 3 layer during high and low solar activity conditions observed from Indian low latitude

RESPONSE OF POST-SUNSET VERTICAL PLASMA DRIFT TO MAGNETIC DISTURBANCES

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, A10304, doi: /2011ja016893, 2011

The occurrence climatology equatorial F-region irregularities in the COSMIC RO data

Imaging observations of the equatorward limit of midlatitude traveling ionospheric disturbances

Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal E B drifts at solar maximum

Correlation between electron density and temperature in the topside ionosphere

The influence of hemispheric asymmetries on field-aligned ion drifts at the geomagnetic equator

Anomalous Ionospheric Profiles. Association of Anomalous Profiles and Magnetic Fields. The Effects of Solar Flares on Earth and Mars

Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia

The Equatorial Ionosphere: A Tutorial

Relation between the occurrence rate of ESF and the verticalplasma drift velocity at sunset derived form global observations

Local time dependent response of postsunset ESF during geomagnetic storms

Analysis of equatorial plasma bubble zonal drift velocities in the Pacific sector by imaging techniques

Daytime zonal drifts in the ionospheric E and 150 km regions estimated using EAR observations

Equatorial and High Latitude Irregularities: Magnetic Storm Effects in Solar Maximum Years

Equatorial spread F fossil plumes

Equatorial Electrojet Strengths in the Indian and American Sectors Part I. During Low Solar Activity

Equatorial ionospheric zonal drift model and vertical drift statistics from UHF scintillation measurements in South America

SOLAR AND MAGNETIC ACTIVITY CONTROL ON THE VHF IONOSPHERIC SCINTILLATIONS AT LOW LATITUDE

Equatorial F-regionvertical plasma drifts during solar maxima

A New Prediction Capability for post-sunset Equatorial Plasma Bubbles

Zonal asymmetry of daytime E-region and 150-km echoes observed by Equatorial Atmosphere Radar (EAR) in Indonesia

GLOBAL PATTERN OF PLASMA BUBBLES IRREGULARITIES AT MIDNIGHT USING ION DRIFT SPECTROMETER MEASUREMENTS

Statistics of total electron content depletions observed over the South American continent for the year 2008

Thermosperic wind response to geomagnetic activity in the low latitudes during the 2004 Equinox seasons

Longitudinal Variations in the Variability of Spread F Occurrence

PUBLICATIONS. Journal of Geophysical Research: Space Physics. Low-latitude scintillation weakening during sudden stratospheric warming events

Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward a global climatology

Optical and radio measurements of a 630-nm airglow enhancement over Japan on 9 September 1999

Observation of Low Latitude Ionosphere by the Impedance Probe on Board the Hinotori Satellite. Hiroshi OYA, Tadatoshi TAKAHASHI, and Shigeto WATANABE

Observations of daytime F2-layer stratification under the southern crest of the equatorial ionization anomaly region

First observation of presunset ionospheric F region bottom-type scattering layer

Modeling and Forecasting the Equatorial Ionospheric Density and Scintillation

Global characteristics of occurrence of an additional layer in the ionosphere observed by COSMIC/FORMOSAT 3

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A05308, doi: /2009ja014894, 2010

Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector

Wavenumber-4 patterns of the total electron content over the low latitude ionosphere

Seasonal and longitudinal dependence of equatorialdisturbance vertical plasma drifts

Three-dimensional simulation of equatorial spread-f with meridional wind effects

Long term studies of equatorial spread F using the JULIA radar at Jicamarca

Dynamics of Equatorial Spread F Using Ground- Based Optical and Radar Measurements

Ionospheric Plasma Drift and Neutral Winds Modeling

Geomagnetic storm and equatorial spread-f

On the height variation of the equatorial F-region vertical plasmadrifts

Electrodynamics of the Low-latitude Thermosphere by Comparison of Zonal Neutral Winds and Equatorial Plasma Bubble Velocity

Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest

Airglow observations and modeling of F region depletion zonal velocities over Christmas Island

Day-to-day variability in the development of plasma bubbles associated with geomagnetic disturbances

Midlatitude nighttime enhancement in F region electron density from global COSMIC measurements under solar minimum winter condition

Equatorial spread F-related airglow depletions at Arecibo and conjugate observations

Equatorial plasma bubble zonal velocity using nm airglow observations and plasma drift modeling over Ascension Island

Artificial and Natural Disturbances in the Equatorial Ionosphere: Results from the MOSC Experiment

An investigation of ionospheric responses, and disturbance thermospheric winds, during magnetic storms over South American sector

CODG TEC VARIATION DURING SOLAR MAXIMUM AND MINIMUM OVER NIAMEY

Investigating COSMIC GPS Radio Occultation Observables as Diagnostics for Ionospheric HF Heating Experiments

Solar cycle variation of ion densities measured by SROSS C2 and FORMOSAT 1 over Indian low and equatorial latitudes

EFFECT OF GEOMAGNETIC STORMS ON VHF SCINTILLATIONS OVER NEAR EQUATORIAL STATION ANANTAPUR

630 nm nightglow observations from 17 N latitude

Equatorial 150 km echoes and daytime F region vertical plasma drifts in the Brazilian longitude sector

F3 layerduring penetration electric field

Comparison of zonal neutral winds with equatorial plasma bubble and plasma drift velocities

Characterizing the 10 November 2004 storm-time middle-latitude plasma bubble event in Southeast Asia using multi-instrument observations

Numerical simulation of the equatorial wind jet in the thermosphere

Optical observations of the growth and day-to-day variability of equatorial plasma bubbles

Ionospheric variations over Indian low latitudes close to the equator and comparison with IRI-2012

GISM Global Ionospheric Scintillation Model

Annales Geophysicae. Annales Geophysicae (2002) 20: c European Geosciences Union 2002

Transcription:

Abadi et al. Earth, Planets and Space (2015) 67:74 DOI 10.1186/s40623-015-0246-7 FULL PAPER Open Access Effects of pre-reversal enhancement of E B drift on the latitudinal extension of plasma bubble in Southeast Asia Prayitno Abadi 1,2*, Yuichi Otsuka 2 and Takuya Tsugawa 3 Abstract We investigated the effects of the F region bottomside altitude (h F), maximum upward E B drift velocity, duration of pre-reversal enhancement and the integral of upward E B drift on the latitudinal extension of equatorial plasma bubbles in the Southeast Asian sector using the observations recorded by three GPS receivers and two ionosondes. The GPS receivers are installed at Kototabang (0.2 S, 100.3 E; 9.9 S magnetic latitude), Pontianak (0.02 S, 109.3 E; 9.8 S magnetic latitude) and Bandung (6.9 S, 107.6 E; 16.7 S magnetic latitude) in Indonesia. The ionosondes are installed at magnetically equatorial stations, Chumphon (10.7 N, 99.4 E; 0.86 N magnetic latitude) in Thailand and Bac Lieu (9.3 N, 105.7 E; 0.62 N magnetic latitude) in Vietnam. We analysed those observations acquired in the equinoctial months (March, April, September and October) in 2010 2012, when the solar activity index F 10.7 was in the range from 75 to 150. Assuming that plasma bubbles are the major source of scintillations, the latitudinal extension of the bubbles was determined according to the S4 index. We have found that the peak of h F, maximum upward E B drift and the integral of upward E B drift during the pre-reversal enhancement period are positively correlated with the maximum latitude extension of plasma bubbles, but that duration of pre-reversal enhancement does not show correlation. The plasma bubbles reached magnetic latitudes of 10 20 in the following conditions: (1) the peak value of h F is greater than 250 450 km, (2) the maximum upward E B drift is greater than 10 70 m/s and (3) the integral of upward E B drift is greater than 50 250 m/s. These results suggest that the latitudinal extension of plasma bubbles is controlled mainly by the magnitude of pre-reversal enhancement and the peak value of h F at the initial phase of development of plasma bubbles (or equatorial spread F) rather than by the duration of pre-reversal enhancement. Keywords: Equatorial ionosphere; Plasma bubble; Pre-reversal enhancement; Scintillation Background Plasma bubble refers to depletion of plasma density at the nighttime equatorial and low-latitude region and is generated through the Rayleigh-Taylor instability (RTI) mechanism (Sultan 1996; Fejer et al. 1999). Even though plasma bubble generation may need a seed perturbation to trigger the instability (Tsunoda 2010; Narayanan et al. 2014), one of the most important factor for the plasma bubble growth is zonal electric field. At the sunset terminator, the eastward electric field is enhanced before the electric field become westward during nighttime. * Correspondence: prayabadi@bdg.lapan.go.id 1 Space Science Center, the Indonesian National Institute of Aeronautics and Space (LAPAN), Bandung, Jawa Barat, Indonesia 2 Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Nagoya, Aichi, Japan Full list of author information is available at the end of the article This phenomenon is called pre-reversal enhancement (PRE). PRE causes an enhanced upward E B drift in the post-sunset sector and thus affects the plasma bubble generation significantly by lifting the ionosphere to higher altitudes, where the growth rate of the RTI is large because of the small ion-neutral collision. The magnitude of the PRE depends on season, solar cycle and longitude (Fejer et al. 1999). The thresholds of PRE strength under different solar and magnetic activities have been inferred for plasma bubble onset (Farley et al. 1970; Jayachandran et al. 1993; Fejer et al. 1999). Previous studies have investigated relation between the strength of PRE (as indicated by the peak of h F, peak vertical drift velocity and magnitude and latitudinal extension of EIA crest) and latitudinal/altitudinal extension of plasma bubble in some longitudinal sectors (see, for 2015 Abadi et al.

Abadi et al. Earth, Planets and Space (2015) 67:74 Page 2 of 7 example Valladares et al. 2004; Beniguel et al. 2009; Dabas et al. 1998; Bagiya et al. 2013). Plasma density irregularities within plasma bubble cause scintillation, which is the fluctuation of amplitude and/or phase of the radio wave propagating from satellites to ground-based receiver through the ionosphere. Since the irregularities exist within the plasma bubbles, the scintillation region coincided with theplasmabubbles.therefore,bythegpsscintillation measurement, latitudinalextensionoftheplasmabubbles can be observed. By analysing the GPS data in the American sector in September 2001 June 2002 (solar maximum period), Valladares et al. (2004) have found that TEC depletion/gps scintillation can reach more than 8 from magnetic equator when the peak of h F at the magnetic equator is above 500 km. In the Indian sector during September October 1989 when F 10.7 was 100 300, scintillation at 4 GHz occurred over the equatorial region when h F at the magnetic equator exceeded 400 km and that scintillation occurred at low latitudes when h F at the magnetic equator exceeded 500 km with vertical drift velocity 30 m/s or more (Dabas et al. 1998). These results indicate that uplift of F layer to higher altitude is responsible for higher latitudinal extension of plasma bubble. Recently, Bagiya et al. (2013) have reported that h F at 19:30 LT in the Indian equatorial region is well correlated with the altitudinal extension of spread F, which corresponds to the latitudinal extension of plasma bubbles. In this study, we aim to disclose the relation between PRE and the latitudinal extension of plasma bubbles in the Southeast Asian region. We use h F and vertical drift velocity, obtained from ionosondes in the magnetic equator, to investigate effect of the PRE on latitudinal extension of plasma bubble. The latitudinal extension of plasma bubble is observed by GPS receivers installed at three sites in Indonesia. Methods Frequency-modulated continuous wave (FMCW) ionosondes are operated at Chumphon (10.7 N, 99.4 E; 0.86 N magnetic latitude) in Thailand and at Bac Lieu (9.3 N, 105.7 E; 0.62 N magnetic latitude) in Vietnam as a part of the SEALION (Southeast Asia low-latitude ionospheric network) project (for details, see Maruyama et al. 2007). The locations of the ionosondes are shown in Fig. 1. We Fig. 1 Geometry of study observations. Two FMCW ionosondes are installed at Chumphon and Bac Lieu. Three GPS receivers for monitoring GPS L1 scintillation are installed at Kototabang, Pontianak and Bandung. Circles indicate the field-of-view of the GPS scintillation measurements assuming that the ionospheric pierce points of GPS radio path exists at an altitude of 300 km

Abadi et al. Earth, Planets and Space (2015) 67:74 Page 3 of 7 manually scaled the virtual height (h F) at 2.5 3 MHz from the ionograms at time intervals of 10 min between 18:00 and 24:00 LT (LT = UT + 7 h) for equinoctial months (March, April, September and October) in 2010, 2011 and 2012. The solar activity index F 10.7 in this period ranged from 75 to 150. The h F at 2.5 3 MHz is a good indicator for altitude of the F layer bottomside in the post-sunset period. The value of h F at 2.5 3 MHz with higher altitude after sunset provides information about the dynamic process in the F layer, particularly vertical motion due to E B drift after sunset (Maruyama et al. 2007). We considered that the vertical drift derived from dh F/dt with h F exceeding 300 km can be a good indicator for true vertical motion during nighttime. Three GPS receivers installed in the western part of Indonesia are used to observe ionospheric scintillation activity at night in the equinoctial months of 2010, 2011 and 2012. Two of the three GPS receivers which have been operated at Bandung (6.9 S, 107.6 E; 16.7 S magnetic latitude) and Pontianak (0.02 S, 109.3 E; 9.8 S magnetic latitude) are Novatel GSV4004B units. The GSV4004B provides the S4 index, which represents magnitude of the amplitude scintillations. S4 is defined as the ratio of standard deviation of the received signal intensity to the average. In this study, we use the S4 index taken from satellite elevation angles greater than 10. Scintillation due to multipath frequently occurs at elevation angles less than 30. We have excluded scintillation due to multipath, by applying the method of Abadi et al. (2014), who have successfully excluded multipath-affected scintillation using the standard deviation of code-carrier divergence (sigma- CCDiv) measure. The other GPS receiver was installed at Kototabang (0.2 S, 100.3 E; 9.9 S magnetic latitude). This receiver measures signal intensity of the GPS radio waves of the L1 frequency at a sampling rate of 20 Hz. We calculated the S4 index from the measured signal intensity. However, the multipath effects were not excluded from the scintillation data obtained from this receiver because this receiver does not provide code-carrier divergence data. Consequently, in order to minimise the multipath effects, we used only the S4 indices taken with elevation angle higher than 30. Figure 1 shows the geometry of the observations. Two ionosondes are located near the magnetic equator. From the rate of increase in h F at the magnetic equator, we estimated vertical drift caused by eastward electric fields during the PRE period. The field-of-view of all GPS receivers covers an area from near the magnetic equator up to 15 S in geographic latitude. The geometry of the observations therefore allows us to study the relation between the upward E B drift and the latitudinal extension of plasma bubble at the low latitudes in the Southeast Asian sector. Analysis methods Figure 2 shows local time variations of h F at 3 MHz and vertical drift derived from the rate of change of h F (i.e., dh F/dt), as obtained by the ionograms at Chumphon on 26 October 2012. The value of h F increased between 17:10 and 19:20 LT, reached a maximum at 19:20 LT and decreased afterward. The increase of h F could be caused by an enhancement of the eastward electric field (E) at the evening terminator, so-called PRE. Bittencourt and Abdu (1981) showed that dh F/dt closely represents the upward E B drift when h F exceeds about 300 km. According to their result, we calculate the upward E B drift (hereafter denoted as V u )fromdh F/dt when h F exceeds about 300 km and use the obtained value as a proxy for the eastward E. Inthisstudy,weconsiderthat the maximum V u is one of the important parameters for latitudinal extension of plasma bubble. In Fig. 2, the maximum dh F/dt during a period between 17:10 and 19:20 LT is defined as maximum V u. There are two major causes of uncertainties in h F. When h F is low, recombination of the plasma density is dominant. For this case, h F variation does not represent actual movement of the F layer altitude, so that eastward electric field cannot be estimated from the h F variation. When h F is less than 300 km, it is probably affected by the recombination process (Bittencourt and Abdu 1981; Maruyama et al. 2007). Therefore, in the present study, we do not use the data when h F is less than 300 km. Another source of uncertainty is spread F. We exclude h F and dh F/dt during the period of spread F occurrence because accuracy for scaling h F is degraded during the spread F event due to spread of the F layer trace in the ionogram. In Fig. 2, the occurrence of spread F (19:30 22:00 LT) is shown by a red solid rectangle. The spread F occurred after h F reached a peak. Since spread F occurs after a peak of h F, V u can be obtained in the abovementioned procedure. Fig. 2 Local time variations of height of the F layer and vertical drift, as derived from Chumphon ionograms with 26 October 2012 data

Abadi et al. Earth, Planets and Space (2015) 67:74 Page 4 of 7 In addition to the peak h F and maximum V u, we also consider the duration of PRE as a parameter affecting the latitudinal extension of plasma bubble. Krall et al. (2010) have numerically investigated why plasma bubble stops rising and concluded that plasma bubble stops rising when eastward E at the upper edge of the bubble is equal to zero. This result suggests that the duration of PRE at plasma bubble generation could affect the latitudinal extension of plasma bubble. We define the duration of PRE as a period from the start of positive dh F/dt until the time of the peak h F. To reduce the uncertainty of h F, we exclude h F lowerthananaltitudeof300km.infig.2, shown as an example, dh F/dt starts increasing at 17:10 LT. However, h F between 17:10 and 18:00 LT does not exceed an altitude of 300 km. For this case, start of V u is determined to be 18:10 LT. The end of V u is determined to be 19:20 LT, when h F reaches a peak. The last parameter we also consider in this study is the integral of V u during the PRE period. We calculate sum of dh F/dt during a period of duration of PRE defined in the above procedure. We also use it as the integral of V u. In this study, to investigate the effects of PRE on the maximum latitudinal extension of plasma bubbles, we have used two datasets. The first (group 1) is used for comparison of peak h F, maximumv u, duration of PRE and integral of V u obtained from the Chumphon ionosonde with the maximum latitude of scintillation observed by the GPS receivers at Kototabang and Bandung between 18:00 and 22:00 LT. We assumed that the ionospheric altitude of the pierce point for the GPS scintillation measurements is at an altitude of 300 km. The other (group 2) is the same comparison but using the Bac Lieu ionosonde and the GPS receivers at Pontianak and Bandung. Results Figure 3a d shows the latitude of scintillation furthest away from the magnetic equator (the maximum latitude of scintillation) during 18:00 22:00 LT as a function of the peak h F, maximum V u, duration of PRE and integral Fig. 3 Relations between maximum latitudes of scintillation for group 1 and a peak h F, b maximum upward E B drift, c duration of PRE and d the integral of upward E B drift. Data for group 1 were obtained from the Chumphon ionosonde and the GPS receivers at Kototabang and Bandung. The y-axis in the right side in each panel indicates magnetic latitude at geographic longitude 99.4 E. Red lines indicate the linear relation between the two parameters in each panel

Abadi et al. Earth, Planets and Space (2015) 67:74 Page 5 of 7 of V u, respectively, obtained from group 1 (ionosonde at Chumphon and GPS scintillation at Bandung and Pontianak). From the figure, most of the maximum latitudes of the scintillation during the observation period are found to distribute from 0 S to 10 S corresponding to 10 S 20 S magnetic latitudes in the Southeast Asian longitudinal sector. The peak h F ranges from 250 to 450 km, maximum V u from 10 to 70 m/s and integral of V u from 50 to 250 m/s. A red line in each panel in Fig. 3 represents the linear relation (as obtained by linear regression) between the two corresponding parameters, and the cross-correlation coefficient is noted. The crosscorrelation coefficients for the relations of the maximum latitudes of scintillation to the peak h F, maximum V u, duration of PRE and integral of V u are 0.6, 0.5, 0.05 and 0.5, respectively. Thus, we can reasonably assert that the maximum latitudes of scintillation are positively correlated with the peak h F, maximum V u and integral of V u, and that there is no correlation between the maximum latitude of scintillation and the duration of PRE. Figure 4a d is same as Fig. 3a d but for group 2 data. The maximum latitude of scintillation observed at Pontianak and Bandung stations is plotted as a function of the peak h F, maximum V u, duration of PRE and integral of V u measured at Bac Lieu. Red straight lines represent linear relations, and the cross-correlation coefficient between the two parameters is noted in each panel. Most of the maximum latitudes of scintillation occur in the range between 0 S 10 S, with the peak h F varying with 250 450 km, maximum V u varying with 10 60 m/s and integral of V u varying with 50 250 m/s. Cross-correlation coefficients for the relations of the maximum latitudes of scintillation to the peak h F, maximum V u, duration of PRE and integral of V u for group 2 are 0.4, 0.3, 0.02 and 0.3, respectively. These results are consistent with those for group 1 although the data for group 2 are scattered widely compared to the data for group 1. On the basis of the above results for groups 1 and 2, we find that the peak h F, maximum V u and integral of V u at the equatorial region are well positively correlated with the maximum latitudinal extension of plasma bubble. Here, we discuss a possible reason why the data are scattered. Plasma bubbles are generated during the PRE at the evening terminator and move eastward with the Fig. 4 Relations between maximum latitudes of scintillation for group 2 and a peak h F, b maximum upward E B drift, c duration of PRE and d the integral of upward E B drift. Data for group 2 were obtained from the Bac Lieu ionosonde and the GPS receivers at Pontianak and Bandung

Abadi et al. Earth, Planets and Space (2015) 67:74 Page 6 of 7 same velocity as ambient plasma. In this study, we use the GPS scintillation data to measure the maximum latitudinal extension of the plasma bubble. The field-ofview of the GPS covers approximately 20 of longitude, as shown in Fig. 1. Although the local time is limited to 4 h between 18:00 and 22:00 LT, plasma bubble observed after the PRE could be generated at the west of the observed location. In this case, the longitude of the observed h F and V u is different from the longitude where the plasma bubble occurs. The difference in longitude is 19 at the most, assuming that the plasma bubble moves at a velocity of 150 m/s. The longitudinal difference between the PRE and observed plasma bubble may be responsible for the scatter of the relation between the PRE and maximum latitudinal extension of plasma bubbles. Discussion Since the region of scintillation coincides with the plasma bubble, we can investigate the location where plasma bubble exists by using GPS-scintillation monitoring. Abdu et al. (1983) have confirmed that plasma bubble in the post-sunset sector at low-latitude regions could arise from latitudinal extension of plasma bubble generated primarily over the magnetic equator. We can consider that plasma bubbles are extended from the magnetic equator to the location at which the scintillation is observed. Statistically, our finding of good correlation of the maximum latitude of scintillation versus the peak h F and magnitude of PRE reaffirms that the altitude of the F layer and V u at the initial growth of plasma bubble is important in deciding how far plasma bubbles will extend. We have found that peak h F ranges from 250 to 450 km, maximum V u from 10 to 70 m/s and integral of V u from 50 to 250 m/s when the maximum latitudinal extension of plasma bubble varies from 0 S to 10 S (10 S 20 S magnetic latitude). In the present study, we used the data during a period of F 10.7 varying from 75 to 150. It is well known that the strength of PRE depends on solar activity. Jayachandran et al. (1993) have reported that the threshold of the F layer altitude determined at 5.5 MHz for plasma bubble generation are 350 and 450 km when the mean of F 10.7 are 70 and 120, respectively. Fejer et al. (1999) have also shown that the upward drifts larger than about 5 10 m/s and about 40 45 m/s play a dominant role in plasma bubble generation at solar minimum and maximum, respectively. Our results of the peak h F and the magnitude of PRE for plasma bubble generation are consistent with these previous studies. V u at the equatorial region lifts the F layer to higher altitudes, where the frequency of ion-neutral collisions is low. Considering the linear growth rate of the RTI (Sultan 1996), it is reasonable that the low ion-neutral collision frequency makes the growth rate large, so that such condition allows the plasma bubble to reach higher altitudes. Thus, in this study, statistical study of our observation imply that the post-sunset magnitude of PRE and the F layer altitude play an important role in determining the altitudinal and latitudinal extension of the plasma bubbles. Figure 5 displays amplitude scintillation index (S4) at maximum latitude for each scintillation event obtained from the Kototabang Bandung (group 1) and Pontianak Bandung (group 2) GPS receivers. We have found that strong scintillation (S4 index >0.5) occurs between 5 S and 10 S (15 S 20 S in magnetic latitude). These latitudinal ranges in the Southeast Asia longitudinal sector correspond to the EIA crest region. Beniguel et al. (2009) and Abadi et al. (2014) have reported that strong scintillations were concentrated in EIA crest region. Since intensity of the amplitude scintillation is proportional to amplitude of the plasma density, the strong scintillations occur at the EIA crest region, where the plasma density is high. On the other hand, in Fig. 5, we can see that weak scintillations are distributed not only at latitudes of the EIA crest region but also at outside of the EIA crest region. Actually, Valladares et al. (2004) have reported that the maximum latitudes of scintillation are mostly located at lower latitudes than the boundary of the EIA crest at the American longitudinal sector. By detecting weak scintillation, we can investigate latitudinal extension of plasma bubble. Regarding relation between the latitudinal extension of plasma bubble and the duration of PRE, we have supposed that if vertical drift persists for a long time, plasma bubble may grow for a longer period and thus reach higher altitudes and latitudes; consequently, latitudinal extension of plasma bubble might be higher when the vertical drift persists a longer period. As shown in Figs. 3c and 4c, however, there is no correlation between the duration of PRE and the maximum latitudinal extension of scintillations. Fig. 5 Distribution of scintillation index, S4 as a function of maximum latitudes scintillation observed for each day by GPS receivers (blue circle) at Kototabang and Bandung (group 1) and (black cross) at Pontianak and Bandung (group 2)

Abadi et al. Earth, Planets and Space (2015) 67:74 Page 7 of 7 This result indicates that duration of PRE may not play an important role in the altitudinal and latitudinal extension of plasma bubble. Consequently, our findings in this paper indicate that the altitudinal and latitudinal extension of plasma bubbles largely depend on the magnitude of PRE, rather than on the duration of PRE. Conclusions We investigated the effects of the peak h F and magnitude and duration of PRE on the latitudinal extension of plasma bubble in the Southeast Asian region, under the assumption that region of scintillation coincides with plasma bubble or plasma depletion. We have found that plasma bubble reaches 10 20 magnetic latitudes empirically in the following conditions: (1) the peak h F is greater than 250 450 km, (2) the maximum V u is greater than 10 70 m/s and (3) the integral of V u is greater than 50 250 m/s. We have also found that the maximum latitudinal extension of plasma bubble is well positively correlated with the peak h F, maximum V u and the integral of V u, but that it is not correlated with the duration of PRE. These results indicate that the altitude of the F layer, the maximum V u and the integral of V u at the initial phase of plasma bubble generation strongly control the altitudinal and latitudinal extension of plasma bubble. The duration of PRE may not play an important role in extension of plasma bubble. These results can be interpreted as follows. The large eastward electric field lifts up the F layer to a higher altitude through E B drift. At higher altitude, where the frequency of neutral-ion collisions is lower, the growth rate of plasma bubble becomes larger. This helps the bubble to grow and reach higher altitude. In short, our finding indicates that the key factor of plasma bubble extension is the altitude of bottomside F layer and the magnitude of PRE, not the duration of PRE. Competing interests The authors declare that they have no competing interests. Authors contributions PA carried out the major part of data analysis and wrote the manuscript. YO was involved in interpretation of data analysis and organization of the paper. TT participated in reviewing the paper and is responsible person for SEALION project. All authors read and approved the final manuscript. University, United Kingdom and Dr. Tatsuhiro Yokoyama from NICT, Tokyo, Japan for their valuable comments and suggestions for this study. Author details 1 Space Science Center, the Indonesian National Institute of Aeronautics and Space (LAPAN), Bandung, Jawa Barat, Indonesia. 2 Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Nagoya, Aichi, Japan. 3 National Institute of Information and Communications Technology (NICT), Koganei, Tokyo, Japan. Received: 5 June 2014 Accepted: 12 May 2015 References Abadi P, Saito S, Srigutomo W (2014) Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia. Ann Geophys 32:7 17. doi:10.5194/angeo-32-7-2014 Abdu MA, de Medeiros RT, Nakamura Y (1983) Latitudinal and magnetic flux extension of the equatorial spread F irregularities. J Geophys Res 88(A6):4861 4868 Bagiya MS, Sridharan R, Sunda S (2013) Pre-assessment of the strength and latitudinal extent of L-band scintillation: a case study. J Geophys Res 118:488 495. doi:10.1029/2012ja017989 Beniguel Y, Romano V, Alfonsi L, Aquino M, Bourdillon A, Cannon P, de Franceschi G, DubeyS,ForteB,GhermV,JakowskiN,MaterassiM,NoackT,PozogaM, Rogers N, Spalla P, Strangeways HJ, Warrington EM, Wernik A, Wilken V, Zernov N (2009) Ionospheric scintillation monitoring and modelling. Ann Geophys-Italy 52:391 416 Bittencourt JA, Abdu MA (1981) A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F region. J Geophys Res 86:2451 2454 Dabas RS, Lakshmi DR, Reddy BM (1998) Day-to-day variability in the occurrence of equatorial and low-latitude scintillations in the Indian zone. Rad Sci 33(1):89 96 Farley DT, Balsley BB, Woodman RF, McClure JP (1970) Equatorial spread F: implications of VHF radar observations. J Geophys Res 75(34):7199 7216 Fejer BG, Scherliess L, de Paula ER (1999) Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104(A9):19859 19869 Jayachandran B, Balan N, Rao PB, Sastri JH, Bailey GJ (1993) HF Doppler and ionosonde observations on the onset conditions of equatorial spread-f. J Geophys Res 98(A8):13741 13750 Krall J, Huba JD, Ossakow SL, Joyce G (2010) Why do equatorial ionospheric bubbles stop rising? Geophys Res Lett 37:L09105. doi:10.1029/2010gl043128 Maruyama T, Kawamura M, Saito S, Nozaki K, Kato H, Hemmakorn N, Boonchuk T, Ha Duyen C (2007) Low latitude ionosphere-thermosphere dynamics studies with ionosonde chain in Southeast Asia. Ann Geophys 25:1569 1577 Narayanan VL, Sau S, Gurubaran S, Shiokawa K, Balan N, Emperumal K, Sripathi S (2014) A statistical study of satellite traces and evolution of equatorial spread F. Earth Planets Space 66:160 Sultan PJ (1996) Linear theory and modelling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res 101(A12):26875 26891 Tsunoda RT (2010) On equatorial spread F: establishing a seeding hypothesis. J Geophys Res 115:A12303. doi:10.1029/2010ja015564 Valladares CE, Villalobos J, Sheehan R, Hagan MP (2004) Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers. Ann Geophys 22:3155 3175 Acknowledgements The FMCW ionosondes used in this study belong to the National Institute of Information and Communications Technology (NICT) of Japan and have been operating under the auspices of the SEALION project. The ionograms obtained from those ionosondes are available at the NICT website. The GPS receiver at Kototabang is operated as part of collaboration between the Solar Terrestrial Environment Laboratory (STEL) of Nagoya University and the National Institute of Aeronautics and Space of Indonesia (LAPAN). This work was supported by JSPS Core-to-Core Program, B. Asia-Africa Science Platforms. PA thanks the Indonesian Ministry of Research and Technology (KEMENRISTEK) for supporting his internship at STEL Nagoya University for three months of this study in 2013. The authors also thank Dr. Susumu Saito from the Electronic Navigation Research Institute (ENRI), Tokyo, Japan, Dr. N. Balan from Sheffield