Response to Wek èezhìi Land and Water Board Undertaking Number One NICO Project Land Use Permit and Type A Water Licence Application

Similar documents
11. GEOCHEMICAL CHARACTERIZATION

Modelling the Reactivity of Multi-Mineral Systems Application to the Prediction of Copper Heap Leach Drain Down Chemistry

APPENDIX 8.II METAL LEACHING AND ACID/ALKALINE ROCK DRAINAGE

GEOCHEMICAL CHARACTERIZATION AND WATER QUALITY PREDICTION AT THE ANTAMINA MINE 1

Predicted Sulfide and Silicate Mineralogy at the Sentinel Copper Mine, Zambia

Understanding Mineralogical Composition, Weathering, and Alteration, to Manage ML/ARD in a Base-Metal Tailings Storage Facility

APPENDIX B SAMPLE ADEQUACY EVALUATION FOR ROSEMONT GEOLOGIC MATERIALS

ANNEX VIII: APPENDIX E MINERALOGY RESULTS

An Investigation into

Geogenic versus Anthropogenic Metals and Metalloids

2.2 Acid mine drainage

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

What are Metal Leaching and Acid Rock Drainage and Why are They Important to Mining?

Executive Summary. Primary data gaps. Principal findings and recommendations. Page ES-1 SC12808

Project Copper CBC. Bahia Brazil -August

Carrapateena Mineral Resources Explanatory Notes April OZ Minerals Limited. Carrapateena Mineral Resources Statement April

Memo. Detour Lake Mine: Assessment of Rock Types for ML/ARD Selective Handling FINAL

Characterization and comparison of mine wastes from legacy mines in NM

Aureus Mining New Liberty Project Geology

Gowest Gold Ltd. Selective Arsenopyrite-Pyrite Flotation

WITH GOLD MINERALIZATION AT CAROLIN MINE (92H/11)

Evaluation of Factors Affecting Porphyry Mine Drainage Chemistry

COMBINATION OF MMI AND ENZYME LEACH METHODS IN EXPLORATION FOR GOLD IN AN AREA OF THE CANADIAN SHIELD COVERED WITH GLACIAL SEDIMENTS: A CASE STUDY

A critical review of static geochemical test methods applied to mining wastes, including their applicability to field conditions

MINERALOGY AND CHEMISTRY OF MINE WASTE ROCK PILES IN MINING DISTRICTS IN SOUTHERN COLORADO AND NEW MEXICO

I.S : What s in it and the role of the Geologist

Geochemistry of Mine water and Tailing at Malanjkhand Copper deposit. Abstract

Magino Gold Project. Environment Management System. Mine Material Management Plan. Technical Support Document 20-8

Model for predicting drainage quality from mine wastes Muhammad Muniruzzaman

Geochemistry & mineralogy of late-metamorphic shear zones:

Log Interpretation Parameters Determined by Analysis of Green River Oil Shale Samples: Initial Steps

Earth and Planetary Materials

How many molecules? Pyrite FeS 2. Would there be any other elements in there???

Earth Materials II Review Optical Mineralogy and Igneous Minerals

Tailings and Mineral Carbonation: The Potential for Atmospheric CO 2 Sequestration

Bass Metals records further positive drill results & progress at 3 prospects.

Mineralogical characterisation of gold ores: collaboration is the best technique! Dorrit de Nooy (Senior Mineralogist, Metallurgy Services)

Applicability of Near-Infrared (NIR) spectroscopy for sensor based sorting of a porphyry copper ore.

State Metallic Minerals Lease Sale Minnesota s Vermilion Gold District

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4).

PRESS RELEASE NEW MINERAL RESOURCE UPDATE AT PRAIRIE CREEK MINE. Measured + Indicated and Inferred Resource Tonnages Increased

Geochemical exploration on the Tareek Darreh Gold deposit, north of Torbat-e Jaam, east Iran

Chemical Variation of Feed Coal and Coal Combustion Products from an Indiana Power Plant Utilizing Low Sulfur Powder River Basin Coal

Drilling Program Commences on Iron Oxide Copper Gold Targets

High-grade Copper and Gold Discovered at Productora

ASTM D5744 Kinetic Test Method Status and Application

EXPLORATION & DEVELOPMENT

Ascertaining the acid mine drainage potential of a mineral concession in south-western Ghana

INTRODUCTION TO MINERALOGY 15

remediation measurements

GEOMETALLURGY NEW IDEAS FOR MINING AND MINERAL PROCESSING AT LKAB

For personal use only

CREATING VALUE THROUGH DISCOVERY IN SOUTH AMERICA. Lara Copper Project. Lara 45%-Owned Property in Southern Peru

IMPORTANCE OF UNDERSTANDING COMPOSITIONAL DIFFERENCES IN SIZE FRACTIONS

WEATHERING-CONTROLLED FRACTIONATION OF ORE AND PATHFINDER ELEMENTS AT COBAR, NSW

Distinguishing between analytical precision and assessment accuracy in relation to materials characterisation

ASX / MEDIA RELEASE 6 MAY MILE SILVER-LEAD-ZINC DISCOVERY; HIGH GRADE SILVER-GOLD IN ROCK CHIPS AT RUBY SILVER

Supporting Information Appendix

Geochemistry in Exploration

GLY 155 Introduction to Physical Geology, W. Altermann

Priority Pollutants in Untreated and Treated Discharges from Coal Mines

The Owl Creek Pit Part 1: Relocating Mine Rock from Surface Stockpiles to the Pit to Mitigate Acid Drainage

CERAMIC GLAZING as an IGNEOUS PROCESS

ASX Announcement. 28 January Drill results indicate large Porphyry Copper Gold System at Peenam

muscovite PART 4 SHEET SILICATES

About Earth Materials

ABANDONED MINE SLAGS ANALYSIS BY EPMA WDS X-RAY MAPPING

MOUNT DOROTHY AND ELAINE DOROTHY PROSPECTS UPDATE

Earth Materials I Crystal Structures

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

Department of Geological Sciences and Geological Engineering, Queen s University, Kingston, ON 2

PREDICTING THE SLAGGING PROPENSITY OF SASOL-LURGI GASIFIER COAL FEEDSTOCK

Geology, Alteration and. Petrogenesis

Name: NAME PROPERTY 1 PROPERTY 2. Specimen #41: Specimen #42: (ASK!) Specimen #43: Specimen #44: Tuesday Wednesday (circle lab day)

SURVEY OF CLOSED AND ABANDONED MINES IN BRITISH COLUMBIA FOR ACID ROCK DRAINAGE I: REGIONAL PERSPECTIVE ABSTRACT

CAMBRIAN INTRUSION-RELATED COPPER MINERALISATION AT THE THOMAS CREEK PROSPECT, SOUTHWESTERN TASMANIA

The McPhillamys Gold Deposit, Discovery History & Geology. Presenter: Tara French

Initial Gold Resource at Sissingue Tengrela Project (Ivory Coast)

What monitoring techniques are appropriate and effective for detecting CO2 migration in groundwater: isotope-based monitoring Philippe Négrel

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs

The Cobalt Rainbow. Airborne geophysical maps show that a north trending aeromagnetic high suggests further undiscovered mineralisation.

ARD Assessment of Overburden and Coal from the South Galilee Coal Project

Caravel commences major new drilling program at Calingiri copper-molybdenum project 8,500-9,000m of RC drilling planned across multiple targets

Mine Waste: Pollution Source or Georesource?

Reporting Category 1: Matter and Energy

Solapur University, Solapur. Syllabus for B.Sc. II- Geochemistry - (IDS) Semester System - CGPA To be implemented from Academic Year

THE INTERNATIONAL KINETIC DATABASE: RATES OF ACID GENERATION,

Identification of geochemically distinct regions at river basin scale using topography, geology and land use in cluster analysis

Ministère de l Environnement et de l Action en matière de changement climatique

INÁCIO Manuela, FERREIRA António, FERREIRA Luís, ALMEIDA Luís, PEREIRA Virgínia, PINTO Manuel

PEAK GOLD JOINT VENTURE PROJECT TOK MINING DISTRICT, ALASKA

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

For personal use only

Drill locations for the 2015 program are highlighted in the geology map below.

Shuichi HATTORI Director, 1st Construction Division, Japan Railway Construction, Transport and Technology Agency

Acid Mine Drainage Risk Assessment Utilizing Drill- Hole Data and Geological Modelling Tools

RELIANCE, FLINDERS RANGES: MINERALOGY, GEOCHEMISTRY AND ZINC DISPERSION AROUND A NONSULFIDE OREBODY

Mineral Resources Supply & Information with a Focus on Rare Earth Elements

REGULUS DISCOVERS NEW GOLD-RICH, HIGH-GRADE COPPER-GOLD ZONE AT RIO GRANDE

A bench-scale process to remove Pb from firing range soils

Transcription:

Response to Wek èezhìi Land and Water Board Undertaking Number One NICO Project Land Use Permit and Type A Water Licence Application FORTUNE MINERALS LIMITED 148 Fullarton St., Suite 1600 London, Ontario N6A 5P3 Date: March 5, 014

TABLE OF CONTENTS 1.0 Introduction... 1.0 Geochemical Dataset for the NICO Project... 3.0 Sulphur Speciation in Mine Rock and Ore... 3.1 Acid Generation Potential... 3 4.0 Rationale for Sulphur Criterion for Mine Rock Management... 4 5.0 Sulphur Cut Off Criterion Based on Total Sulphur... 5 5.1 Expected Mass of Each Rock Type According to the Revised Geochemical Classification Criteria... 6 5. Sensitivity of Sample Classification According to the Proposed Geochemical Classification Criteria for Mine Rock Management... 7 6.0 Conclusions... 7 7.0 References... 8 Appendix A Statistical Summaries of Results of Geochemical Characterization According to Mine Rock Classification... A Page Fortune Minerals Limited TABLE OF CONTENTS i

LIST OF TABLES LIST OF FIGURES Fortune Minerals Limited TABLE OF CONTENTS ii

1.0 Introduction The public hearings for the NICO Project Water Licence and Land Use Permit Applications were completed in Behchoko, Northwest Territories on 5 and 6 February 014. The Wek èezhìi Land and Water Board (WLWB) requested that Fortune Minerals Limited (Fortune) complete the following undertaking related to mine rock classification: Undertaking #1: Fortune Minerals to provide sulphur cut off criteria for Type 1, and 3 waste rock based on total sulphur and reconfirm the expected mass of each type of waste rock. Fortune Minerals Limited Fortune Minerals Response 1

.0 Geochemical Dataset for the NICO Project The geochemical dataset presented in Appendix IV of the Developer s Assessment Report (DAR) (Fortune 011) was used to develop the geochemical criteria for mine rock classification presented in the Mine Rock Management Plan (MRMP) (Fortune 013). Geochemical test results that were used to develop the mine rock classification criteria included: acid base accounting (ABA), including total sulphur, sulphide sulphur, sulphate sulphur, total carbon, carbonate, and neutralization potential (NP). The results of analysis of total sulphur and sulphide sulphur were used to calculate the maximum potential acidity (MPA) and acid potential (AP), respectively. Carbon concentrations were used to calculate the carbonate neutralization potential (CaNP); net acid generation (NAG) testing; mineralogical Analysis (X-ray diffraction (XRD) with Rietveld refinement); trace metal analyses; short-term leach testing (shake flask extraction, synthetic precipitation leachate procedure (SPLP), and comprehensive analyses of NAG leachates); humidity cell tests (HCT); and field cell leachate analyses. Appendix A of the MRMP discusses the evaluation that was undertaken to establish the proposed geochemical criteria for mine rock management. 3.0 Sulphur Speciation in Mine Rock and Ore Sulphur analysis is carried out to identify the concentration and composition of sulphur species in a geologic material. Sulphur species present in geological materials include: sulphide and sulphosalt minerals, sulphate minerals, and organic sulphur. Sulphide mineral oxidation can result in the release of acidity, sulphate and trace metals to water that comes in contact with sulphidic mine rocks (MEND 009). Dissolution of some soluble sulphate minerals present in highly oxidized bodies can also release acidity. Mineralogical analysis was performed to determine the source of sulphur in mine rock and samples at the NICO Project. Table 1 summarizes the results of mineralogical analysis of mine rock and, including results presented in the DAR and results from recent analysis of sub-samples collected from mine rock field cell FC-11. The only sulphide Fortune Minerals Limited Fortune Minerals Response

mineral detected by X-ray diffraction was pyrite [FeS ]; however, the minimum detection limit for XRD is 1%. Sulphide minerals including pyrite and arsenopyrite [FeAsS], and trace chalcopyrite [CuFeS] and pyrrhotite [Fe 1-x S] were observed in exploration drill c and samples from the mine rock field cells. 3.1 Acid Generation Potential Acid generation potential (AP) refers to the total amount of acid a geological material can produce. The acid generation potential of a sample is calculated according to Equation 1, using the percent sulphur in acid generating sulphur containing species (MEND 009): ( ) Equation 1 The sulphur species selected to calculate acid generation potential is typically selected based on the known mineralogy of the deposit. Sulphide minerals tend to be the largest source of potential acid in aerobic weathering conditions. The potential for future mineral acid generation can usually be calculated from the sulphide sulphur content (MEND 009). In samples lacking previous sulphide oxidation, the measured total sulphur concentration should approximately equal the sulphide sulphur concentration. If total sulphur concentrations are greater than measured sulphide concentrations, the difference may result from the presence of unanalyzed sulphate minerals or analytical error. Total sulphur can be used to calculate acid potential; however, this may conservatively overestimate AP because of the inclusion of basic sulphates and / or organic sulphur that are not a significant, long term source of AP (MEND 009). As expected based on the mineralogy of the deposit, sulphide sulphur is the main sulphur species in mine rock at the NICO Project. However, total sulphur concentrations are slightly greater than sulphide sulphur concentrations (Figure 1). Figure compares total sulphur concentrations to the Relative Percent Difference (RPD) between sulphur and sulphide sulphur concentrations. Low sulphur samples reported the greatest RPDs between sulphur and sulphide. In part, this is due to the fact that some samples had lower analytical detection limits for sulphide sulphur versus total sulphur, as a result of analytical method. Furtherm, analytical accuracy generally decreases at concentrations near the detection limit, which may also account for the larger RPDs measured in low sulphur samples. The difference between total and sulphide sulphur concentrations in low sulphur samples could also be the result of oxidation of sulphide minerals during the delay between drilling, sample collection and static testing. The agreement between total sulphur and sulphide sulphur concentrations increases with increasing total sulphur concentration (Table 3). The average proportion of sulphide Fortune Minerals Limited Fortune Minerals Response 3

sulphur in samples containing greater than 0.3% total sulphur ranged from 80 to 89%. A marked decrease in the average sulphide sulphur content of samples was noted in samples containing less than 0.3% total sulphur. This comparison indicates that total sulphur concentrations reliably indicate the sulphide sulphur concentration of samples containing greater than 0.3% total sulphur. In low sulphur samples, total sulphur could overestimate the AP of a sample if the total sulphur concentration includes non-reactive sulphur unlikely to generate acidity. 4.0 Rationale for Sulphur Criterion for Mine Rock Management The sulphur criterion for mine rock management was selected following a detailed review of the results of ABA, NAG testing, and HCT, as presented in Appendix A of the MRMP. The decision making process was guided by the following considerations: - In general, most rock at the NICO Project has low sulphur concentrations. Mine rock and samples had an average concentration of 0.1% total sulphur (0.17% sulphide sulphur), and a median concentration of 0.07% total sulphur (0.04% sulphide sulphur) (Table ). - As suggested by the results of mineralogical analysis, mine rock and contain little neutralization potential (NP), owing to the absence of large quantities of carbonate mineralization. The average NP of mine rock and was 14 t CaCO 3 /0 t, and the median 1 t CaCO 3 /0 t. Despite the absence of carbonate minerals, the low median sulphide concentration of the mine rock and dataset suggests that most samples are not capable of generating a large amount of acidity. - Static test results used to establish a sample s acid generation potential included NP/AP ratio and NAG-pH: o o An NP/AP ratio of is commonly used to distinguish PAG from non-acid generating (non-ag) rock, which represents a reasonable factor of safety (MEND 009). A well-defined trend existed between NP/AP ratio and sulphur concentrations, and most samples with an NP/AP less than contained greater than 0.5% sulphide sulphur (Figure 3). Figure 3 also demonstrates that samples with an NP/AP ratio less than contained greater than 0.3% total sulphur. Samples with a NAG-pH less than 4.5 are considered to have a high potential for acid generation, owing to a lack of buffering capacity relative to the acid generation potential of a sample (MEND 009). All samples with a NAG-pH less than 4.5 had sulphide sulphur concentrations greater than Fortune Minerals Limited Fortune Minerals Response 4

0.5% (Figure 4). Similar to NP/AP, samples with a NAG-pH less than 4.5 contained greater than 0.3% total sulphur. - Table 4 summarizes the HCT results. Two samples in the HCT dataset generated acidic ph leachate. Sample 93, a sample of rhyolite mine rock from exploration drill c collected in 004, contained 0.59% total sulphur (0.49% sulphide sulphur) and no measurable neutralization potential. Acidic leachate ph values were generated from the onset of the test. Sample 907, a sample of black rock schist mine rock from exploration drill c collected in 004, contained 0.31% total sulphur (0.7% sulphide sulphur). All other mine rock samples in the HCT dataset contained less than 0.07% total sulphur (less than 0.04 % sulphide sulphur). Initially, a sulphide sulphur concentration of 0.3% was selected to classify PAG rock (Fortune 013). The PAG criterion was subsequently updated to 0.5% sulphide sulphur in January 013, in response to Technical Session Information Request #13 (Fortune 014). The use of a PAG criterion of 0.5% sulphide sulphur added m conservatism in defining PAG rock relative to the original criterion of 0.3% sulphide sulphur. In general, samples containing less than 0.5% sulphide sulphur had an average sulphide sulphur concentration of 0.05%, and a median sulphide sulphur concentration of 0.01% (Table 5). The low median sulphide sulphur concentration indicates that most rock with less than 0.5% sulphide sulphur has a very low acid generation potential. 5.0 Sulphur Cut Off Criterion Based on Total Sulphur For this undertaking, Fortune Minerals is to provide sulphur cut off criteria for Type 1, and 3 waste rock based on total sulphur and reconfirm the expected mass of each type of waste rock. Based on a review of the existing geochemical dataset, rock containing greater than 0.3% total sulphur is classified as PAG according to NP/AP ratio (Figure 3), NAG ph (Figure 4) and HCT (Table 4). The geochemical classification of samples using a total sulphur concentration of 0.3% and a sulphide sulphur concentration of 0.5% was similar: - Approximately 76% of the samples in the ABA dataset had sulphide sulphur concentrations less than 0.5%. Likewise, 76% of the ABA dataset samples contained less than 0.3% total sulphur. Theref, the use of a total sulphur concentration of 0.3% to classify PAG rock is appropriate based on the results of sulphur speciation in the existing geochemical dataset, Table 6 presents the proposed revision to the geochemical criteria for mine rock management using total sulphur. Using a total sulphur concentration of 0.3% to classify Fortune Minerals Limited Fortune Minerals Response 5

PAG rock, Type 1 and Type rock would contain less than 0.3% total sulphur, whereas rock would contain greater than 0.3% total sulphur. Samples submitted for geochemical testing as a component of the DAR were re-classified according to the revised geochemical criteria for mine rock management presented in Table 6. Appendix A presents statistical summaries of the results of trace metal analysis, acid base accounting, short-term leach testing, and comprehensive analysis of NAG leachates according to mine rock classification. The information in Appendix A supersedes the classification of samples presented in Technical Session Information Request 13 (Fortune 013), where several samples of Type rock were conservatively grouped in with rock. It is recognized that using a sulphur cut-off criterion of 0.5% total sulphur would provide an added level of conservatism in selection of non-pag rock, which could account of the oxidation of rock between sample collection and analysis. A review of availability of rock for construction under lower total sulphur values is included in Sections 5.1 and 5.. 5.1 Expected Mass of Each Rock Type According to the Revised Geochemical Classification Criteria Table 7 presents the tonnages of each category of mine rock based on a sulphide sulphur concentration of 0.5%. Based on a review of the geochemical data set and the similarity in percentage of samples classified as PAG between a 0.5% sulphide sulphur cutoff (76% of samples), or 0.3% total sulphur cutoff concentration (also 76% of samples), it can be reconfirmed that the masses of available rock as presented in Table 7 for each rock type will not change appreciably with the change to a total sulphur concentration of 0.3%. The block model is expected to be updated as part of the Mine Rock Management Plan, and will be used in conjunction with operational sampling to verify that appropriate rock is used in construction. Preliminary estimates of the tonnage of Type 1a rock based on a total sulphur concentration of 0.5% are provided for reference, for the purpose of evaluating the potential effect of using total sulphur to classify mine rock on the amount of construction material. The block model will ultimately be updated based on the final mine rock management criteria, which will reduce the uncertainty associated with material quantities and origins well in advance of on-site construction activities. Fortune Minerals Limited Fortune Minerals Response 6

5. Sensitivity of Sample Classification According to the Proposed Geochemical Classification Criteria for Mine Rock Management Table 8 presents the classification of samples in the geochemistry dataset according to the range of geochemical classification criteria that were considered as part of the decision making process for the MRMP. Figures 5 and 6 compare solid phase concentrations of arsenic and bismuth to geochemical test leachate concentrations for arsenic and selenium, respectively. Figures 5 and 6 were originally presented in Appendix A of the MRMP. As demonstrated in Table 7, it is expected that a suitable amount of rock with a low arsenic and selenium leaching potential, and a low acid generation potential will be available for construction. Table 8 presents the potential variability in percentages of samples from the geochemical database that meet the classification criteria for differing combinations of arsenic, bismuth, and total sulphur cutoff values Lowering the total sulphur criterion from 0.3% total sulphur to 0.15% total sulphur has no material change in the relative proportion of samples classified as Type 1a construction rock. Approximately 16% of the geochemistry samples would be classified as Type 1a construction rock using an arsenic cut-off criterion of 500 ppm. The proportion of Type 1a samples decreases by only a few percent when the arsenic cut-off criterion is decreased to ppm arsenic and 00 ppm arsenic, respectively. The arsenic cutoff of 500 ppm was selected based on feedback during the December 013 technical sessions (Fortune 014). All but 3 samples that contained less than 500 ppm arsenic had leachate concentrations less than the Mine Metal Effluent Regulation (MMER) concentration of 0.5 arsenic. Mine rock classification is most sensitive to the bismuth criterion, which is correlated to selenium leachate potential. Increasing the bismuth criterion from 50 ppm bismuth to ppm bismuth would result in a 7 to 1% increase in the amount of construction rock available. The bismuth criterion of 50 ppm bismuth was selected as it was the lowest solid phase concentration at which selenium concentrations were measured in geochemical test leachates (Figure 6). 6.0 Conclusions A review of the available data set indicates a reasonable agreement between the results of total sulphur and sulphide sulphur analysis. Total sulphur and sulphide sulphur concentrations vary at lower total sulphur concentrations. This could be a result of analytical error at concentrations near the detection limit, or it could be the result of oxidation of sulphur in the time between drilling, sample collection and analysis. It is Fortune Minerals Limited Fortune Minerals Response 7

recognized that no corresponding sulphate mineral were identified by mineralogical analysis; theref, the presence of sulphate in samples in the geochemical dataset is likely the results of oxidation of sulphide minerals within the c. Theref, it is possible that the predicted AP could be slightly underestimated by using sulphide sulphur alone. It is considered reasonable and appropriate to use a criterion of either 0.5% sulphide sulphur or 0.3% total sulphur for identifying PAG mine rock. Using a sulphur criterion with a cutoff value of 0.5% sulphide sulphur, or a total sulphur cutoff of 0.3 weight percent yields similar results in terms of amount of available construction rock. Using a slightly m conservative value of 0.5% total sulphur would yield less available construction rock. 7.0 References Fortune Minerals Limited. 011. Developer s Assessment Report, NICO Project. Fortune. 013. Mine Rock Management Plan, NICO Project. Fortune. 014. Response to Technical Session Information Request Number 13. MEND. 009. Prediction manual for drainage chemistry from sulphidic geologic materials. MEND Report 1.0.1. Fortune Minerals Limited Fortune Minerals Response 8

List of Tables Fortune Minerals Limited Tables 8

FC-1 FC- FC-3 FC-4 FC-5 FC-11 # FC-11 #3 FC-11 #5 Mine Rock Mine Rock Mine Rock Mine Rock Ore Mine Rock Mine Rock Mine Rock Feldspar Porphyry and Black Rock Schist (±magnetite) Table 1 Results of Mineralogical Analysis of Mine Rock and Ore NICO Project, Fortune Minerals Limited Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Mineral Ideal Formula Composition (%) Ferrohornblende [(Ca,Na)3(Fe,Mg,Al)5Si8O(OH,F)] 4.3 4.6 9.5 59.6 1.9 Ferrohornblende, sodian [(Na,K)Ca (Fe,Mg) 5 (Al,Si) 8 O (OH,F) ] 18.4 Tremolite [Ca Mg 5 Si 8 O (OH) ] 4 1 Actinolite [Ca (Mg,Fe) 5 Si 8 O (OH) ] 54.4 Omphacite [(Ca,Na)(Mg,Fe +,Al)Si O 6 ] 9 14.4.8.1 Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Clinochl [(Mg,Fe + ) 5 Al(Si 3 Al)O 10 (OH) 8 ] 1.6 Kaolinite [Al Si O 5 (OH) 4 ] 1.9 Diopside [MgCaSi O 8 ]. 13. 4.4.6 1.6 1. Microcline [KAlSi 3 O 8 ] 34.9 18.1 7.3. 5.7 7.7 7.5 Orthoclase [KAlSi 3 O 8 ] 8. Albite [NaAlSi 3 O 8 ] 1. 3.4.8.3 Quartz [SiO ] 1 7.7 3 3.4.5 3.9 4.1 3.1 Biotite [K(Mg,Fe) 3 AlSi 3 O 10 (OH,F) ] 9.8 4.8 8.4 3 6.5 16 17 16 Siderophyllite [KFe + Al(Al Si )O 10 (F,OH) ] 10.7 5. 13.9. 6.9 Forsterite [Mg SiO 4 ] 6.7 Ilmenite [FeTiO 3 ] 1.1 1.4 0.7 0.9 0.8 Magnetite [Fe 3 O 4 ]. 3.3 6.5.1.9 Aresenopyrite [FeAsS] 6.5 Pyrite [FeS ] Calcite [CaCO 3 ].4 0.7 0.8 Phlogopite 1 M Mica [KMg 3 (AlSi 3 O 10 )(OH)] 5.4 3.9 3.5 Hastingsite [NaCa Fe 4 (Al,Fe)Al Si 6 O (OH) ] 64 65 68 Notes: - XRD cannot identify amorphous phases, and theref semi-crystalline precipitate minerals may not be fully represented by the results of XRD. - Diffraction peak overlap between minerals can cause peaks to be exaggerated, obscured or misidentified. - Trace concentrations of minerals are difficult to identify due to the limitations of the analytical method: as a rule-of-thumb, the minimum detection limit for XRD is approximately 1%. Black Rock Schist (±magnetite)

Table Comparison of Sulphide and Sulphur Concentrations in Mine Rock and Ore NICO Project, Fortune Minerals Limited Sulphate Sulphur Sulphide Sulphur Total Sulphur % % % Number of Samples 94 94 344 Minimum Maximum 0.66.5.5 Median 0.03 0.04 0.07 Average 0.05 0.17 0.1 75th Percentile 0.06 0.1 0.8 95th Percentile 0.18 0.69 0.85 * Note: Concentration ranges include all samples of mine rock and.

Table 3 Evaluation of the Proportion of Sulphide Sulphur in Mine Rock and Ore Samples NICO Project, Fortune Minerals Limited Total Sulphur Concentration Average Proportion of Sulphide Sulphur to 0.1 79% 0.1 to 0. 66% 0. to 0.3 66% 0.3 to 0.4 80% 0.4 to 0.5 85% 0.5 to 1 8% 1 to 3 89%

Sample ID NP/AP Ratio Total Sulphur Sulphide- Sulphur Depletion Rate Time to Depletion % % mg/kg/week Years NP t CaCO3 / 0 t Depletion Rate mg/kg/week Feldspar Porphyry 859 0 0.05 0.0 0.16 4 1 6 41 Non-acid generating 1 0.008 913 13 0.07 0.04 0.16 48 16 7 41 Non-acid generating - negligible sulphide content 65 Rhyolite 863 36 0.03 <0.01 0.16 8 11 4 45 Non-acid generating 00 0.05 93 0 0.59 0.49.0 45 0 N/A (1) N/A Acid generating - Acid generation realized during kinetic testing. 00 0.00 87 40 0.05 0.01 0.18 10 1 8 9 Non-acid generating 36 0.01 Breccia 95 8 0.0 0.01 0.16 8 9 1 148 Non-acid generating 00 4 Black Rock Schist (+ magnetite) 890 11 0.05 0.03 0.16 34 10 84 Non-acid generating 1,700 0.1 977 11 0.07 0.04 0.16 46 14 3 90 Non-acid generating 1, 0.01 Black Rock Schist (± magnetite) 80 91 0.0 <0.01 0.16 11 8 46 Non-acid generating 41 < 907 1 0.31 0.7 0.18 85 10 0 514 Acid generating - Acid generation realized during kinetic testing. 5, 0.03 Sub-Arkosic Wacke 881 7 0.03 0.0 0.16 8 10 1 165 Non-acid generating 38 0.04 Siltstone 914 31 0.01 <0.01 0.16 4 17 4 85 Non-acid generating 5 1. Initial NP is zero and theref these calculations cannot be competed.. Average concentration over last five weeks of testing. Sulphide-Sulphur Depletion Table 4 Results of Humidity Cell Testing NICO Project, Fortune Minerals Limited NP Depletion Time to Depletion Years Acid Generation Potential Arsenic (ppm) Arsenic ()

Table 5 Range of Concentration of Sulphide Sulphur and Total Sulphur in Potentially Acid Generating and Non-Potentially Acid Generating Samples NICO Project, Fortune Minerals Limited < 0.5% Sulphide Sulphur >0.5% Sulphide Sulphur Number of Samples 5 69 Minimum % 0.7 Maximum % 0.4.5 Median % 0.01 0.41 Average % 0.05 0.59 75th Percentile % 0.06 0.6 95th Percentile % 0.17 1.6 < 0.3% Total Sulphur >0.3% Total Sulphur Number of Samples 6 8 Minimum % 0.005 0.30 Maximum % 0.30.5 Median % 0.03 0.50 Average % 0.07 0.67 75th Percentile % 0.10 0.80 95th Percentile % 0. 1.6

Table 6 Proposed Changes to the Geochemical Classification Criteria for Mine Rock Management NICO Project, Fortune Minerals Limited Mine Rock Classification Cover Construction Material Original Criteria (Table 4-1, Mine Rock Management Plan) Revised Criteria (December 013 Technical Hearings Information Request #13) Revised Criteria (January 014) Mine Rock Management Practise Glacial till / sand Glacial till / sand Glacial till / sand Natural aggregate or soil material with a low potential for acid generation and metal leaching, and the required grain size characteristics to meet the objectives of the closure cover. Type 1a Type 1 Type Sub-economic Mine Rock Samples contain < 0.3% sulphide sulphur <50 ppm bismuth < 1,000 ppm arsenic Samples contain < 0.3% sulphide sulphur < 1,000 ppm arsenic Samples contain > 0.3% sulphide sulphur > 50 ppm bismuth > 1,000 ppm arsenic Classified according to Fortune s grade control cut-offs Samples contain <0.5% sulphide sulphur <50 ppm bismuth < 500 ppm arsenic Samples contain < 0.5% sulphide sulphur <50 ppm bismuth between 500 and 1,000 ppm arsenic Samples contain < 0.5% sulphide sulphur < 1,000 ppm arsenic Samples contain > 0.5% sulphide sulphur > 50 ppm bismuth > 1,000 ppm arsenic Classified according to Fortune s grade control cut-offs CDF = Co-Disposal Facility; ppm = parts per million; < = less than; > = greater than; % = percent Samples contain <0.3% total sulphur <50 ppm bismuth < 500 ppm arsenic Samples contain < 0.3% total sulphur <50 ppm bismuth between 500 and 1,000 ppm arsenic Samples contain < 0.3% total sulphur < 1,000 ppm arsenic Samples contain > 0.3% total sulphur > 50 ppm bismuth > 1,000 ppm arsenic Classified according to Fortune s grade control cut-offs Rock with a low potential for acid generation and metal leaching to be used for construction of roads, upgrades to existing roads, rock pads and lay down area outside the boundaries of the co-disposal facility (CDF). Can also be used for construction in or on the CDF. Rock with a low potential for acid generation and metal leaching to be used for construction of seepage collection pond dams and perimeter embankments within the boundaries of the CDF. Rock with a low potential for acid generation, to be used for construction of perimeter dykes within the CDF. Potentially acid generating and metal leaching rock, to be contained within the CDF. rock should only be placed inside of the perimeter embankments of the CDF. Sub-economic Mine Rock will be placed within the CDF with a minimum offset of 0 m from the inside edge of the perimeter dyke.

Mine Rock Classification Type 1A Type 1A (1) Type 1 Type < 0.5% Sulphide Sulphur <500 ppm As <50 ppm Bi Table 7 Mine Rock Production Schedule according to Preliminary Geochemical Classification Criteria <0.5% total sulphur <500 ppm As <50 ppm Bi < 0.5% Sulphide Sulphur 500-1,000 ppm As <50 ppm Bi < 0.5% Sulphide Sulphur <1,000 ppm As >50 ppm Bi > 0.5% Sulphide Sulphur and/or > 1,000 ppm As and/or > 50 ppm Bi Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes 015 Year 0 1,353,686 1,57,101 873,444,35,897 17,130 1,737 016 Year 1 4,538,808 4,457,594 1,6,15 4,866,415 460,14 16,716 017 Year 1,507,117 1,489,814 55,16 3,348,983 1,443,47 85,36 018 Year 3 1,138,366 Tonnage Pending 573,715 4,414,66,849 1,487,667 415,36 019 Year 4,63,486 Tonnage Pending 1,096,84,006 3,854,659 1,486,65 359,01 00 Year 5 968,333 Tonnage Pending 318,65 795,598 1,661,310,30 01 Year 6 1,507,864 Tonnage Pending 54,569,461,619 1,748,536,143 0 Year 7 3,005,490 Tonnage Pending 1,31,084,668,983 1,695,589 143,075 03 Year 8 3,08,850 Tonnage Pending 1,315,866 13,46 3,983,388 1,694,911 4,763 04 Year 9 1,664,351 Tonnage Pending 1,097,155 10,939 3,19,909 1,700,013 38,99 05 Year 10 97,49 Tonnage Pending 490,577 7,313 1,811,548 1,708,15 63,690 06 Year 11 1,079,456 Tonnage Pending 636,947 406,886,698 1,691,107 76,81 07 Year 1 83,395 Tonnage Pending 580,379 1,65,97 1,698,048 319,693 08 Year 13 809,063 Tonnage Pending 53,06 1,585,501 1,707,036 31,359 09 Year 14 668,919 Tonnage Pending 96,73 865,84 1,713,31 345,001 030 Year 15 61,806 Tonnage Pending 435,98 1,794,410 1,691,60 98,771 031 Year 16 58,313 Tonnage Pending 388,74,517,88 1,640,161 70,760 03 Year 17 558,384 Tonnage Pending 57,500 1,757,97 1,658,975 05,084 033 Year 18 507,535 Tonnage Pending 78,064 645,781 1,797,508 156,790 034 Year 19 508,39 Tonnage Pending 377,47,766,966 1,657,957 476,483 035 Year 0 698,591 Tonnage Pending 31,51 1,011,94 1,70,971 07,657 036 Year 1 314,64 Tonnage Pending 78,777 80,08 438,190 5,40 Total (Tonnes) 9,499,58 8,330,378 13,536,398 38,34 49,167,96 3,500,406 5,484,473 Ore Sub-Economic Mineralized Mine Rock * As presented in: Fortune. 014. Response to Technical Session Information Request #13.

Case 1: 0.3 % Total Sulphur cutoff; 50 ppm Bismuth cutoff, varying Arsenic content Table 8 Sensitivity Analysis for Proposed Arsenic, Bismuth and Total Sulphur Criteria for Mine Rock Management NICO Project, Fortune Minerals Limited Case : 0.15 % Total Sulphur cutoff; 50 ppm Bismuth cutoff, varying Arsenic content Proposed Criteria Proposed Criteria Total Sulphur (%) 0.3 0.3 0.3 0.3 0.15 0.15 0.15 0.15 (Type 1a) 00 (Type 1a) 500 (Type 1a) (Type 1a) 00 (Type 1a) 500 (Type 1a) 0* Arsenic (ppm) 0 (Type 1, and 3) 0 (Type 1, and 3) 0 (Type 1, and 3) 0 (Type 1, and 3) 0 (Type 1, and 3) 0 (Type 1, and 3) 0* Bismuth (ppm) 50 50 50 50 50 50 50 50 Total Number of Samples 80 80 80 80 80 80 80 80 Percent of each category Type 1a 13% 14% 16% 13% 14% 16% 19% Type 1 6% 5% 3% 6% 4% % 18% Type 46% 46% 46% 46% 39% 39% 39% 39% 35% 35% 35% 35% 43% 43% 43% 43% Case 3: 0.3 % Total Sulphur cutoff; ppm Bismuth cutoff, varying Arsenic content Case 4: 0.15 % Total Sulphur cutoff; ppm Bismuth cutoff, varying As content Proposed Criteria Proposed Criteria Total Sulphur 0.3 0.3 0.3 0.3 0.15 0.15 0.15 0.15 Arsenic (Type 1a) 00 (Type 1a) 500 (Type 1a) (Type 1a) 00 (Type 1a) 500 (Type 1a) 0* 0 (Type 1, and 3) 0 (Type 1, and 3) 0 (Type 1, and 3) 0 (Type 1, and 3) 0 (Type 1, and 3) 0 (Type 1, and 3) 0* Bismuth Total Number of Samples 80 80 80 80 80 80 80 80 Percent of each category Type 1a 0% 3% 8% 0% % 7% 31% Type 1 11% 8% 3% 10% 7% % 9% Type 35% 35% 35% 35% 8% 8% 8% 8% 35% 35% 35% 35% 43% 43% 43% 43% * No distinction between Type 1a and Type 1 material

List of Figures Fortune Minerals Limited Figures 9

Total Sulphur Figure 1 Comparison of Sulphide Sulphur and Total Sulphur Concentrations in Mine Rock Samples from the NICO Project Fortune Minerals Limited 3 1:1.5 1.5 1 0.5 FAP - fortune FAP - Golder QAP - Fortune QAP - Golder rhyolite - fortune rhyolite - Golder Siltstone - Fortune Siltstone - Golder Wacke / BRS - Fortune Wacke / BRS - Golder Breccia General Waste Ore - Fortune Ore - Golder 0 0 0.5 1 1.5.5 3 Sulphide Sulphur (%)

Total Sulphur Figure Comparison of Sulphide Sulphur and Total Sulphur Concentrations in Mine Rock Samples from the NICO Project Fortune Minerals Limited 3.5 1.5 1 0.5 FAP - fortune FAP - Golder QAP - Fortune QAP - Golder rhyolite - fortune rhyolite - Golder Siltstone - Fortune Siltstone - Golder Wacke / BRS - Fortune Wacke / BRS - Golder Breccia General Waste Ore - Fortune Ore - Golder 0 0 10 0 30 40 50 60 70 80 90 Relative Percent Difference between Sulphur and Sulphide Sulphur Concentrations (%)

NP/AP Ratio NP/AP Ratio Figure 3 Sulphur Concentrations versus NP/AP Ratio in Mine Rock Samples from the NICO Project Fortune Minerals Limited 0 Non-Acid Generating Sulphide-sulphur = 0.5% Uncertain 10 1 NP/AP = 0.1 Potentially Acid Generating 0.01 Uncertain 0.01 0.1 1 10 Sulphide Sulphur (%) 0 Non-Acid Generating Total Sulphur = 0.3% Uncertain 10 1 NP/AP = 0.1 Potentially Acid Generating 0.01 Uncertain 0.01 0.1 1 10 Total Sulphur (%) NOTE: NP/AP ratio calculated using AP based on sulphide sulphur concentrations.

Total Sulphur (%) Sulphide Sulphur (%) 3.5 Potentially Acid Generating Figure 4 Sulphur Concentrations versus NAG-pH in Mine Rock Samples from the NICO Project Fortune Minerals Limited NAG ph = 4.5 Uncertain 1.5 1 0.5 0 Sulphide-sulphur = 0.5% Uncertain Non-Acid Generating 3 4 5 6 7 8 9 10 NAG ph 3 Potentially Acid Generating Uncertain.5 NAG ph = 4.5 1.5 1 0.5 0 Uncertain Total Sulphur = 0.3% Non-Acid Generating 3 4 5 6 7 8 9 10 NAG ph

Arsenic () Figure 5 Arsenic Concentrations in Geochemical Leach Tests as a Function of Solid Arsenic Concentrations NICO Project, Fortune Minerals Limited 10 As = ppm As = 00 ppm As = 1,000 ppm As = 500 ppm FAP QAP 1 Rhyolite 0.1 0.01 Siltstone Wacke / BRS 1 10 0 00 000 Arsenic (ppm) Symbols cold according to geochemical test: Shake flask extraction Synthethic leachate precipitation procedure Comprehensive analysis of net acid generation leachates Humidity Cell Testing (First Flush and Steady State concentrations) Field cell leachates (minimum and maximum concentrations)

Selenium () Figure 6 Selenium Concentrations in Geochemical Leach Tests as a Function of Solid Bismuth Concentrations NICO Project, Fortune Minerals Limited 1 Bi = 50 ppm Bi = ppm 0.1 0.01 0.1 1 10 0 00 000 Bismuth (ppm) Symbols cold according to geochemical test: Shake flask extraction Synthethic leachate precipitation procedure Comprehensive analysis of net acid generation leachates Humidity Cell Testing (First Flush and Steady State concentrations) Field cell leachates (minimum and maximum concentrations)

Appendix A Statistical Summaries of Results of Geochemical Characterization According to Mine Rock Classification Fortune Minerals Limited APPENDIX A

Appendix IV-a Solid Phase Analysis - Drill C and Outcrop Samples NICO Project, Fortune Minerals Ltd. Sample Number 1 Hole Mine Rock Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Sb Se Sn Sr Ti Tl U V Y Zn Lithology From To Classification mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 856 0357 56 65 Feldspar Porphyry Type 1a 0. 67000 970 0.4 0 500 0.1 70 11 6 6000 80000 4 1700 4.0 4.0 60 5.3 1.4 5 1 17 55 0.30 8.6 7 9 917-Follow Up 98151 0 8 Breccia Type 1a 70 53 1 1.0 14 600 0. 11 10 6 9800 75000 10 5000 180 1.3 00 7.8 5.6 3.6 0.7 4 3 1 0.36 7.8 18 10 7 875-Follow Up 0359 96 111 BRS+mt Type 1a 30 310 59 3.0 30 48000 0. 10 48 0 15000 8000 19 36000 6.0 9.0 5.3 9.6 0.7 10 11 000 0.83 1.0 35 17 15 994-Follow Up 0030 68 73 BRS+mt Type 1a 40 0 30.3 1 45000 0. 36 49 10 160 40 11 36000 1 0.5 16.0 1. 7. 0.7 10 6 500 0.79.4 46 1 15 866-Follow Up 0358 136 138 Type 1a 35000 90 180 4. 5 10 0. 30 70 9 35000 13 10 360 3.8 700 18.0.5 6. 0.7 10 5 000 0.78 5.6 50 10 8 887-Follow Up 98198 95 110 Type 1a 0 6 160 1.6 39 38000 0. 30 73 8 146000 0 8 50 860 1.4 4700 1.0.8 9.1 0.7 5 6 1600 0.55.6 7 10 15 810-Follow Up 0365 69 79 Feldspar Porphyry Type 1a 7000 19 90 1.4 30 4 0. 7 98 80 30 70 7 6600 0 3.0 10 1.0 4.9 4.8 0.7 4 0 000 0.37 9.6 36 14 8 856-Follow Up 0357 56 65 Feldspar Porphyry Type 1a 60 170 1 0.4 3 0 0. 10 160 7 8000 8000 1800 10 4.0 5.7 4.4.1 0.7 17 330 0.36 9.3 8 8 869-Follow Up 0359 3 11 Feldspar Porphyry Type 1a 78000 9 0 1.9 6 0. 1 150 19 40 6000 16 10 90 0.8 15000 18.0 3.7 1.9 0.7 4 89 0.55 5.8 64 16 18 89-Follow Up 9815 0 15 Feldspar Porphyry Type 1a 67000 19 830 1.7 3 1 0. 6 150 7 7000 68000 8 5000 180 1.9 9800 11.0 5.6.5 0.7 4 1500 0.36 1.0 8 14 7 894-Follow Up 9815 30 45 Feldspar Porphyry Type 1a 70 4 1.5 33 8 0.3 10 96 71 30 80000 1 8 350.9 3 13.0 7.7 5.1 0.7 4 5 0.51 10.0 38 19 13 904-Follow Up 0049 31 36 Feldspar Porphyry Type 1a 70 14 0 1.8 1 3600 0. 3 98 5 5000 67000 11 0 160 1. 17000 18.0.5.7 0.7 4 35 0.61 6.4 70 18 8 91-Follow Up 98151 9 105 Feldspar Porphyry Type 1a 60 36 0 1. 0 0. 7 10 54 30 70 6 7600 340 1.0 7 11.0 11.0.8 0.7 3 7 1700 0.53 13.0 31 17 11 955-Follow Up 98197 60 70 Feldspar Porphyry Type 1a 78000 15.1 1 3600 0.3 10 10 6 40 70000 19 10 40 0.7 7 35.0 4.0.1 0.7 4 54 3 0.63 6.7 66 15 19 988-Follow Up 97036 151 157 Feldspar Porphyry Type 1a 80 40 600 1.5 8 30 0. 7 3 16 66000 35000 3 0000 530 0.9 7000 16.0 4.1 14.0 0.7 4 10 500 0.51.5 150 15 85-Follow Up 0357 13 3 Rhyolite Type 1a 60 190 0 0.7 0 0 0. 140 70 41 10 76000 140.4 4700 6.3 6.1 4.9 0.7 16 30 0.31 11.0 1 7 5 860-Follow Up 0358 3 16 Rhyolite Type 1a 60 80 990 0.6 610 0.1 31 0 17 10 77000 3 10 1.0 3600 4.5 4.8 3.1 0.7 1 1 60 0.3 8.6 1 5 7 865-Follow Up 0358 65 77 Rhyolite Type 1a 60 50 1 0.4 9 800 0. 3 170 7 00 80000 600 10 5.5 00 4.7 4.6.5 0.7 1 16 350 0.37 10.0 7 10 871-Follow Up 0359 33 Rhyolite Type 1a 6000 35 0 0.8 5 00 0.1 8 170 48 0 76000 7 5000 160 6. 1500 14.0 5.0 3.1 0.7 18 0.31 13.0 3 11 147 878-Follow Up 0046S 1 10 Rhyolite Type 1a 60 6 1 0.3 4 350 0. 8 180 15 00 8000 1 79.8 0 6..7 1. 0.7 1 15 340 0.33 7. 1 9 3 960-Follow Up 9809 16 131 Siltstone Type 1a 78000 39 0.0 15 4 0. 6 88 6 68000 65000 8 16000 340 1.4 0000 7.0 4.6 1.5 0.7 10 31 3700 0.6 4.5 7 16 0 883-Follow Up 98198 10 0 Sub-Arkosic Wacke Type 1a 30 31 70 1.3 1 17000 0. 10 190 1 80 30 13 7000 640 0.8 13.0 1. 3. 0.7 5 9 1500 0.69.3 5 11 18 96-Follow Up 0033 9 16 Sub-Arkosic Wacke Type 1a 70 59 1 1.5 6 00 0.1 1 150 9 5000 77000 7 7 0 0.7 10 7.3.7.0 0.7 0 0 0.31 5.3 1 16 18 987-Follow Up 97036 63 7 Sub-Arkosic Wacke Type 1a 8000 33 70 0.6 1 500 0. 7 60 8 55000 30 6 10 70.5 600 8.9 1.6 3.5 0.7 3 7 1 0.50.0 16 7 6 899-Follow Up 9707 0 10 Sub-Arkosic Wacke Type 1a 70000 330 0 3.6 3 1700 0.1 59 130 98 0 65000 6 6 0 4.7 10 1.0.7.6 0.7 3 1 0.40 5.8 8 9 13 859 0357 110 114 Feldspar Porphyry Type 1a 0. 70000 1 860 1.4 40 5 0.1 4 10 8 15000 60 6 4 150 4.9 10 8.0 10 6.3 1.8 5 19 0.0 1.0 10 0 NICO-08-013 038 117.04 16. Feldspar Porphyry Type 1a 0. 68000 310 1 1.0 15 600 0. 4 10 150 00 68000 9 4600 80 4.3 15000.3 8.3 3.0 0.7 6 0.34 1.0 7 14 0 860 0358 3 16 Rhyolite Type 1a 0. 65000 890 0.7 30 600 0.1 40 11 10 70 8 800 10 4.0 3700 5.0 51 4.7.1 5 1 13 88 0.0 7.9 1 5 53 863 0358 35 50 Rhyolite Type 1a 0. 58000 00 0.4 0 0.1 160 13 13 7000 65000 4 000 140 4.5 4.0 58 8.0 1. 5 1 13 86 0.30 8.5 7 36 864 0358 50 65 Rhyolite Type 1a 0. 48000 94 80 0.4 30 0.1 70 7 16 0 66000 10 500 00 8.8 1800 6.0 93 7.5.9 5 1 1 53 0.30 9.5 3 8 50 865 0358 65 77 Rhyolite Type 1a 0. 30 3 840 0.4 0 0.1 0 1 8 8000 45000 5 110 3.6 1700 4.0 67 4.3 1.7 5 1 14 71 0.30 8.8 3 6 31 87 0359 33 43 Rhyolite Type 1a 0. 40 36 90 0.5 30 3800 0.1 10 13 36 10 57000 8 0 160.8 700 5.0 7 7.6 3.3 5 17 0.0 9.0 3 7 1 873 0359 44 54 Rhyolite Type 1a 0.3 40 38 850 0.5 40 0 0.1 0 5 36 00 58000 11 0 160 --- 1700 5.0 79 11.0 3.0 5 1 13 86 0.0 11.0 5 5 41 878 0046S 1 10 Rhyolite Type 1a 0. 50000 0 800 0.4 30 800 0.1 10 7 19 10 46000 7 500 98 4.0 800.0 74.6 0.8 5 1 13 79 0.0 6.3 3 8 37 NICO-08-011 038 4.3 13.4 Rhyolite Type 1a 0.1 60000 14 1 0.4 15 670 0.1 19 150 130 0 80 4 9.3 0.3.3 4.7 0.7 15 30 0.3 9.6 8 5 NICO-08-01 038 31.7 41.3 Rhyolite Type 1a 0. 70 7 1 0.4 7 1 0. 19 110 440 10 90 3 110 13.0 1500.8 6.4 4.4 0.7 15 390 0.34 19.0 1 13 1 NICO-08-001 Outcrop Rhyolite Type 1a 0.13 60000 8 1 0.4.00 470 0.10 5.00 79 4 9 67000 3 1500 130 1.3 0 1.6 5.1 1.0 0.7 1. 33 330 0.5 5.8.3 6.8 61.0 NICO-08-00 Outcrop Rhyolite Type 1a 0.8 70 13 1.0 3.70 1 0.1 11.00 74 38 37000 60 7 6 40 1.0 15000 9.1 3.9 0.8 0.7.6 9 00 0.7 7.1 44.0 1.0 8.9 NICO-08-003 Outcrop Rhyolite Type 1a 0.1 8000 30 67 4.6.50 0 0.1 3.00 50 160000 6000 55 50 0 0.5 11.0 1.7 6. 0.7 9. 18 700 0.8 3.4 46.0 8.0 11.0 NICO-08-004 Outcrop Rhyolite Type 1a 0.18 65000 60 0. 43.00 310 0.15 4.90 91 34 10 8000 4 000 84 1.0 0.8.8 3.5 0.9 1.5 14 30 0.4 7.7 0.8 7.5 1. NICO-08-005 Outcrop Rhyolite Type 1a 0.16 60 4 1 0.4 5.60 000 0.11 14.00 130 60 000 70000 6 30 1. 1.8.6 3. 0.7.4 16 310 0.4 6.9 0.6 6.5 11.0 NICO-08-006 Outcrop Rhyolite Type 1a 0.13 65000 3 0.4 3.80 830 0.13 9.0 140 9 8000 4 000 88 3.0 3.3 4.4 1.6 0.7 1.1 19 80 0.3 9.3 0.6 4.7 11.0 118 156 Type 1a 98-170 194 4 Siltstone Fortune Minerals 160 3 98-196 Preliminary Samples-4 50 56 Fortune Minerals Type 1a 98-159 Siltstone Preliminary Samples-5 98 173 0.6 0.6 65000 30 17 11 790 410 1.5 1.5 1 1 5600 3700 1.0 1.0 3 16 48 68 190 98 96000 65000 40 0000 10 9 10 10 330 40..5 0 3 6.0 30.0 480 430 3.8 4.1 1.9 1. 10.0 10.0 6 7 39 6 0 1600 0.90 0.60 3.7 3.8 8 68 17 39 50 NICO-08-008 Outcrop Siltstone Type 1a 0.4 80 47 600 1.6 7.30 600 0.0 11.00 5 36 40 60 7 6000 190.4 8000 8.7.0.0 0.7.4 3 0.3 7.7 71.0 13.0 1.8 NICO-08-009 Outcrop Siltstone Type 1a 0.0 60000 13 80.6 0.63 600 0.11 14.00 130 18 50 50 7 8 10 1. 00 3.0.4 3.1 0.7 11.0 7 3 0.4.5 78.0 13.0 1.4 Minimum 0.13 8000 7 59 0.0 1 310 0.10 3 5 6000 0000 1500 79 1 1 51 1 1 1 1 5 53.00 0 1 5 1.0 Maximum 0.60 80 330 1 4.60 43 48000 1.00 160 70 440 90 55 50 1 6 8000 35 480 11 14 10 11 10 500.00 1 19 150 9 147.00 Median 0.0 60 36 980 1.00 8 0.15 19 97 1 8 66500 7 5000 185 3 8 74 4 3 1 18 1050.00 0 8 17 11 13.00 Average 0.3 60130 78 868 1.7 14 7614 0.19 30 99 54 4740 61978 9 10107 89 3 6667 11 15 5 3 3 5 1334.09 0 8 8 1 0.8 Standard Deviation 0.13 16504 93 347 1.03 13 1398 0.18 36 68 86 60148 18403 8 140 90 4 7051 8 156 3 3 31 159.4 0 4 3 6 4.10 Sample Number 1 Hole Mine Rock Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Sb Se Sn Sr Ti Tl U V Y Zn Lithology From To Classification mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 854 0357 33 43 Rhyolite Type 1 0. 60 90 0.5 40 1 0.1 70 9 1 8000 70 4 000 94 --- 600 6.0 58 6.3.3 5 1 16 37 0.30 10.0 7 9 901-Follow Up 9707 55 80 Type 1 0 500 150.9 7 00 0. 37 61 140 147000 37000 4 40 790 1.3 1500 13.0 1.4 6. 0.7 7 7 1600 0.84 3.1 3 17 15 996-Follow Up 0041 0 10 Sub-Arkosic Wacke Type 1 0 510 160 1.4 14 1 0. 8 130 55 0 0 15 000 40 3.1 190 11.0 1.5 4.7 0.7 4 7 1800 0.64.3 31 10 9 816-Follow Up 9808 5 15 Sub-Arkosic Wacke Type 1 8000 530 66 1.1 47 00 0. 11 140 69 100 8000 9 0 40 1. 30 1.0.1 9.9 0.7 3 5 1600 0.8 1.7 7 10 10 910-Follow Up 96016 44 59 Sub-Arkosic Wacke Type 1 00 830 30 1.1 5 10 0. 31 130 96000 30 11 7000 460 4. 650 9.0.1 9.7 0.7 4 6 1600 0.70.0 7 9 10 880 0046S 0 30 Rhyolite Type 1 0. 50 700 850 0.4 40 1 0.1 590 8 81 8000 70 4 000 79 4. 1700 8.0 64 4.0. 5 1 11 7 0.0 8. 3 6 16 Fortune Minerals 1 81 Upper Type 1 03-7 Preliminary Samples-8 83 96 Ore Zone 0.6 6000 780 0 1.5 10 6 1.0 38 3 110 7000 6000 5 10 50 4.3 630 11.0 180 1.5 3.4 10.0 9 1 0.60.0 1 14 9 Minimum 0.0 6000 500 66 0.40 7 1 0.10 11 8 1 8000 6000 4 000 79 1 190 6 58 1 1 1 5 7.00 0 6 9.00 Maximum 0.60 60 90.90 47 00 1.00 590 140 140 147000 70 4 40 790 4 600 13 180 6 10 10 7 16 1800.00 1 10 3 17 9.00 Median 0.0 00 700 0 1.10 5 6 0.18 37 61 69 0 30 9 000 50 4 650 11 64 5 1 3 7 1600.00 1 7 10 10.00 Average 0.33 3749 679 371 1.7 6 8786 0.8 115 7 71 76143 4571 10 386 333 3 1084 10 101 3 5 3 3 9 1109.14 1 4 0 10.97 Standard Deviation 0.3 14853 166 356 0.83 16 108 0.3 10 60 44 5188 0775 7 18034 48 878 69 3 4 4 766.0 0 3 13 4 30.58 Sample Number 1 Hole Mine Rock Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Sb Se Sn Sr Ti Tl U V Y Zn Lithology From To Classification mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 909 96016 7 4 BRS+mt Type 0.1 30 700 140 1.9 90 0 0.1 0 3 18 150000 35000 4 60 640 1.1 0 10.0 90 1.9 7.5 5.0 5 6 1700 0.80 1.8 31 10 0 814 98419 0 6 BRS+mt Type 0. 8000 700 47.4 470 0800 0.1 40 31 8 160000 0 30 000 460 1.3 700 7.0 60 10.0 4.4 5.0 7 9 00 1.10.7 34 0 16 901 9707 55 80 Type 0.1 5000 600 10. 90 18000 0.1 40 160 100 0000 8 0 530 1.6 0 10.0.3 3.8 5.0 6 8 1 0.90.5 5 10 885 98198 30 41 Type 0. 37000 600 130.0 410 50 0.1 160 6 4 100 0 31 8700 1 9.6 4 11.0 30 3.3 6.3 5.0 11 8 1700 0.40 3.0 37 10 5 953 98197 45 50 Type 0.1 6000 600 10. 50 00 0.1 180 0 8 00000 0 11 0 1.9 35.0 0 18.0 1.0 5.0 7 7 1700 0.50.6 30 10 40 889 000 5 3 Type 0. 40 800 93.1 80 15000 0.1 940 9 3 00 0 35 5000 860 5.9 10 6.0 680 3.0.1 5.0 7 16 0.70 1.9 10 35 943 0364 7 37 Rhyolite Type 0.1 50 700 780 0.4 00 00 0.1 90 11 58 10 100 4 1 110 5.4 6.0 68 10.0 4.5 5 1 00 0.0 8.9 1 5 16 971 96011 3 15 Rhyolite Type 0.1 48000 700 940 1.3 40 5700 0.1 80 0 430 18000 5000 1 0 6.8 000 10.0 40 6.4 3.5 5 16 00 0.0 5.9 1 0 46 980 97035 0 10 Rhyolite Type 0.3 7000 970 0.4 680 0.1 130 1 130 0 80 4 000 98.5 1500 14.0 79 11.0 1.0 5 1 18 0.0 8.5 1 7 946 0364 98 101.6 Siltstone Type 0.1 60 770 1.0 370 4 0.1 30 16 10 160000 100 4 0 60 4.3 1500 8.0 380.8 10.0 5.0 6 16 00 0.80 3.0 58 6 874 0359 54 61 Breccia Type 0. 48000 3 510 1.7 160 8 0.1 0 1 5 78000 50 11 10 360.8 800 13.0 70.4.6 5 7 15 1600 0.70 3.9 50 10 13 855 0357 47 49 Breccia Type 0.3 60 59 930 1.9 10 1800 0.3 60 6 8 57000 60 7 9 50 4.3 1 8.0 170 15.0 3.1 5 3 00 0.30 6.8 19 10 40 917 98151 0 8 Breccia Type 0.1 68000 75 1 1.1 70 0.1 10 18 6 5000 95000 16 4600 180 3.4 00 6.0 190 4.6.8 5 3 3 800 0.0 6.4 18 8 14 945 0364 46 53 Breccia Type 0.1 67000 1 1.9 140 1800 0.1 7 63 3 58000 00 7 00 110 0.8 8.0.8 1.6 5 4 33 3800 0.70 3.0 79 10 0 95 0033 0 9 Breccia Type 0.1 60 00 650.8 140 1 0.1 70 17 66 6000 77000 16 10 730 3.9 6000 10.0 0.8.5 5 3 14 600 0.30 5. 3 0 66 963 98147 46 61 BRS+mt Type 0.1 66000 3 490 1.8 140 0. 8 55 70000 0 1 13700 170 0.9 0 6.0 40 4.1.7 5.0 7 9 700 0.50.9 88 0 37 990 97036 16 5 BRS+mt Type 0.1 35000 33 87 1.8 430 0 0.1 0 30 3 150000 000 18 16000 1 1.0 5600 11.0 3.9 6.9 5.0 17 7 00 0.50 10.0 51 0 13 93 98150 45 55 BRS+mt Type 0.1 35000 55 54 1.8 440 17000 0.1 0 1 00 50000 19 60 550 1.5 00 8.0 40 1.4 1.0 5.0 6 8 1800 0.80.1 33 9 19 949 9603 17 30 BRS+mt Type 0.1 7000 74 6.4 590 0 0.1 30 0 1 00000 0 17 60 710 1.5 1 9.0 30 1.1 1.0 5.0 7 5 1 0.80 1.7 31 9 4 937 005 184 193 BRS+mt Type 0.1 30 40.3 340 30 0.1 0 0 150 100 37000 18 5000 850 0.8 3 9.0 30.5 4.6 5.0 8 1 1 0.50.1 8 10 4 875 0359 96 111 BRS+mt Type 0. 0 46. 40 0 0.1 80 39 180000 0 9 8000 860 --- 1500 19.0 170 10.0 1.0 5.0 9 10 1 0.90 8.7 9 10 3 817 9808 76 86 BRS+mt Type 0.1 00 00 48 1.6 360 0 0.1 0 15 100 8000 5 48000 90 3.0 1 7.0 190 1.5 11.0 5.0 5 5 1 0.70 1.4 3 10 15 994 0030 68 73 BRS+mt Type 0.1 0 00 150 1.4 360 35000 0.1 40 9 11 150000 35000 6 30 1 1.1 1.0 40 0.6 4.4 5.0 9 5 500 0.70 1.7 43 9 38 94 98150 55 65 BRS+mt Type 0. 0 340 1.5 350 10 0. 10 0 80 170000 58000 0 55000 360 0.7 0 7.0 340 1.7 56.0 5.0 6 14 1800 0.80.5 9 10 41 911 96016 138 158 BRS+mt Type 0.1 38000 4 3.9 610 65000 0.1 30 6 60000 0 9 00 1 0.4 7.0 00 1.5 10.0 5.0 16 4 0.30.7 4 0 5 81 0365 145 155 Type 0. 55000 5 650 1.1 160 600 0.1 10 54 4 66000 35000 31 10 90 --- 0 7.0 540 1.5 1.7 5.0 4 59 0.80 1.9 77 8 0 805 0036 38 48 Type 0.1 0 5 41 1.4 360 15000 0.1 9 17 3 160000 30 18 46000 550 1. 8.0 00 1.1 6.1 5.0 5 6 1 0.80 1.8 5 9 15 969 0370 91 Type 0.1 70 7 50 5.7 470 4 0.1 0 64 69 00 70 44 6000 430 11.0 1 61.0 13.0 4.6 5.0 11 11 700 1.50 1.0 81 40 3 815 9808 0 5 Type 0. 0 1 580 1.5 180 15000 0.1 5 9 5 95000 40 11 60 430 0.7 7.0 00 1. 5.1 5.0 3 14 1 0.70.0 0 9 10 A-1/14 Type 989 97036 157 165 0. 40 1 190 0.6 90 0 0.1 10 18 4 100 40 8 7000 530 0.8 4 11.0 40 0.6 5.8 5.0 3 3 0.80 1.7 56 10 19

Appendix IV-a Solid Phase Analysis - Drill C and Outcrop Samples NICO Project, Fortune Minerals Ltd. 887 98198 95 110 Type 0.1 00 9 160 1.3 90 30 0.1 0 17 4 150000 5000 1 47700 680.4 9.0 60.3 6.4 5.0 5 7 0.50.1 8 10 884 98198 0 30 Type 0.1 7000 41 90.5 30 000 0.1 40 36 1 100 0 7 30 4.9 7.0 90 1.3 3.0 5.0 7 9 0.50 1.9 4 10 0 80 0031 73 83 Type 0.1 36000 41 150.5 450 17000 0.1 10 33 36 100 30 33 67000 660 1.1 600 6.0 40 1.7 11.0 5.0 3 11 1 0.70 1.5 34 9 16 965 0367 10 Type 0.1 38000 48 6 1.9 450 18000 0.1 30 7 43 0000 5000 36 80 670 5. 7.0 60 1.5 14.0 5.0 6 9 0.50 1.3 31 10 31 803 0031 83 94 Type 0. 8000 55 110 1.9 360 0 0.1 10 6 93 00 8000 16 46000 660 1. 6.0 180.8 18.0 5.0 4 6 1500 0.60 1.6 4 10 14 97 0033 45 55 Type 0.1 30 70 110.6 350 30 0.1 10 5 100 00 4 65000 690 0.8 3 6.0 70 1.3 10.0 5.0 8 1 000 0.80 1.6 35 0 4 967 0370 30 39 Type 0.1 40 79 150 1.5 410 0.1 8 4 5 180000 36000 6 78000 760 1. 1 7.0 1.5 1.0 5.0 5 9 1500 0.70 1.4 35 10 33 998 0041 91 104 Type 0. 0 85 110 1.5 350 5000 0.1 0 17 85 90 30 7 48000 690 1. 700 11.0 330 1.1 5.5 5.0 4 11 1800 0.80 1.4 33 10 5 866 0358 136 138 Type 0.1 8000 87 170 4.5 750 0.1 40 39 1 60000 8000 1 17000 340.8 17.0 10 16.0 6.1 5.0 9 9 1800 0.80 4.5 54 10 8 9707 0 37 Type 0.3 6000 1 0.4 130 5600 0.1 0 4 110 50 60 3 8 390 1.7 6.0 890 4.3 1.9 5.0 6 1 0.60 3.0 71 9 19 948 9710 67 78 Type 0.1 0 150 1.8 340 30 0.1 10 91 100 50000 16 65000 540.1 3 7.0 40.4 11.0 5.0 6 14 0.60.7 9 10 3 938 0034 1.5 9 Type 0.1 0 00 1.7 350 10 0.1 10 31 3 160000 58000 19 30 540 0.9 800 5.0 80 1.1.7 5.0 9 7 500 1.00 1.9 45 10 14 966 0367 10 18 Type 0.1 55000 180 1.6 480 9700 0. 0 3 1 00 40 35 75000 480 1.3 1 11.0 460 1.9 11.0 5.0 6 16 000 1.00.5 47 0 46 806 0036 48 60 Type 0.1 0 00 78.0 350 10 0.1 50 16 3 160000 30 15 45000 430 0.6 700 7.0 0 1.7 4.8 5.0 5 8 1500 1.00.4 5 10 13 939 0034 61 77 Type 0.1 0 00 190.0 390 17000 0.1 10 3 5 150000 46000 6 57000 490. 1 6.0 80 1.6 13.0 5.0 7 10 1800 0.80.1 30 10 4 888 98198 110 130 Type 0. 8000 00 7 3. 550 0 0.1 170 6 7 180000 10 9 0 0 18.0 3 9.0 30 17.0 9.4 5.0 10 7 1 0.70 0.0 34 0 0 90 98151 74 79 Type 0.1 40 50.6 430 50000 0.1 170 9 410 170000 50 0 00 1 1.1 3600 15.0 80 3.1 4.1 5.0 1 11 0.40.5 44 0 6 970 97060 11 30 Type 0.1 37000 50 1.5 490 17000 0.1 0 3 95 0000 30 9 70000 670 0.6 1 14.0 80 1.3 6.0 5.0 5 8 1 0.80 1. 36 10 40 991 97036 5 30 Type 0.3 0 110 3.8 830 6000 0. 70 35 64 0000 0 7 16000 980 81.0 1 15.0 3.0 0.0 5.0 13 1 1800 0.80 48.0 50 30 37 947 9710 57 77 Type 0.1 36000 500 140 1.4 550 6000 0.1 0 3 1 100 57000 13 46000 60.4 11.0 90 1.5 6.0 5.0 7 8 00 1.00.3 3 9 17 956 98197 70 80 Feldspar Porphyry Type 0.1 60000 5 740 1.9 5600 0.1 7 1 16 40 77000 10 00 10.8 8 8.0 430 3.7 1.4 5 4 57 500 0.50 6.8 61 0 8 869 0359 3 11 Feldspar Porphyry Type 0.1 30 9 660 1.8 90 4 0.1 0 15 6 0 8000 6 0.6 8700 10.0 460.9 1.1 5 4 60 0.40 4.6 69 0 0 867 0358 138 141 Feldspar Porphyry Type 0.3 37000 10 690 1.1 60 000 0.1 3 16 10 0 35000 15 4 140 11.0 10 6.0 60 4.1.4 5 17 600 0.0 1.0 7 10 6 893 9815 15 30 Feldspar Porphyry Type 0. 50 10 670.1 80 3 0.1 5 11 34 30 37000 6 00 3.0 8600 9.0 460 5..4 5 5 5 1600 0.40 9.8 43 10 7 955 98197 60 70 Feldspar Porphyry Type 0.1 66000 10 940. 110 3800 0.1 10 37 110 40 85000 3 10 30.8 7800 9.0 440 3.4 1.7 5 4 53 1 0.60 6.0 58 10 8 954 98197 50 60 Feldspar Porphyry Type 0.1 60 10.0 10 6 0.1 10 4 91 36000 75000 19 10 50 3.1 0 8.0 470 6.8 1.8 5 4 79 800 0.60 6.9 60 0 37 89 9815 0 15 Feldspar Porphyry Type 0. 57000 1 710 1.7 50 1800 0.1 4 11 45 0000 47000 1 4500 160 3.4 6.0 360 5.6.1 5 3 0 800 0.30 1.0 6 10 6 870 0359 11 Feldspar Porphyry Type 0. 50000 1 80 1.8 0 0.1 0 14 45 30 50 1 10 40.6 6 8.0 390.8 1.6 5 3 46 1 0.40 6.3 58 0 0 810 0365 69 79 Feldspar Porphyry Type 0. 57000 13 630 1.4 80 3 0.1 10 15 600 0 50 16 5800 40 3.3 8000 7.0 3.9 3.3 5 4 18 0.30 9.1 33 10 19 894 9815 30 45 Feldspar Porphyry Type 0. 50 15 70 1.4 70 7 0.1 8 15 78 6000 50 3 700 330.0 10.0 430 6. 3.6 5 5 0 700 0.30 9.4 34 0 10 876 0359 111 113 Feldspar Porphyry Type 0.3 66000 0 600 3.4 70 0 0.1 8 57 8 0 40 19 00 5.7 16000 3.0 460 6.8 5.9 5 5 160 0.0 9.4 53 0 15 904 0049 31 36 Feldspar Porphyry Type 0.3 40 3 450 1.3 10 500 0.1 4 3 4 50000 0 5 10500 160 3.0 6500 10.0 590.9 1.7 5 4 1 800 0.60 5.5 73 0 19 908 0049 131 136 Feldspar Porphyry Type 0. 60 8 690 1.3 60 4 0.1 7 1 55 30 60 1 7000 10 3.7 5000 7.0 330 4.5 4.1 5 0 600 0.30 10.0 8 10 8 891 000 110 113 Feldspar Porphyry Type 0. 30 36 350.0 70 7 0.1 0 59 13 8000 0 6 9600 70 3.4 8800 15.0 650 10.0 3.1 5 4 99 0.0 8.8 51 0 15 91 98151 9 105 Feldspar Porphyry Type 0. 78000 37 960 1.5 70 0 0.1 10 14 71 30 107000 17 7600 380 4.5 8 7.0 310 13.0.7 5 4 30 1500 0.40 11.0 37 0 18 931 0033 115 11 Feldspar Porphyry Type 0. 66000 59 70 1.0 50 9800 0.1 10 11 49 6000 00 4 6 390 3.7 5500 8.0 0 8.9 3.6 5 6 4 1 0.0 10.0 5 0 19 913 96016 05 09 Feldspar Porphyry Type 0. 90 65 650 1.7 150 30 0.1 30 9 51 60 40 31 0 770 1.8 0 6.0 750 11.0 10.0 5 4 0 5800 0.30.4 170 0 38 896 9815 96 106 Feldspar Porphyry Type 0. 58000 76 660.1 60 5 0.1 8 10 39 5000 47000 18 5000 0 4.5 10 4.0 13.0 4. 5 3 16 600 0.0 11.0 7 0 0 857 0357 65 79 Feldspar Porphyry Type 0. 65000 89 1.6 60 1 0.1 0 11 5 0000 6000 7 3 140 3.6 9700 4.0 00 5.3 1.6 5 5 0.0 9.1 9 10 16 895 9815 45 60 Feldspar Porphyry Type 0.4 16000 94 150 0.7 60 0.1 4 19 7 5000 0 6 60.6 0 9.0 3.0.4 5 3 6 800 0.0 8.9 33 10 14 811 0365 79 89 Feldspar Porphyry Type 0. 5000 670 1.3 70 7 0.1 70 10 47 000 50 0 6700 1. 5 6.0 4.3 3.6 5 3 0.0 9. 30 10 1 858 0357 105 109 Feldspar Porphyry Type 0.3 80 1.4 70 6500 0.1 9 13 70 7000 50 15 600 40 --- 0 15.0 80 16.0 3. 5 3 7 800 0.0 6.0 14 0 60 988 97036 151 157 Feldspar Porphyry Type 0. 90 00 30 1.4 140 5000 0.1 0 10 19 80 0 17 7000 460 1. 00 7.0 560 3.8 10.0 5 4 140 3500 0.50.3 130 0 8 Outcrop Portal Type 0.40 40 5 570 1.0 60.00 500.40 3.40 13 9 6000 40 9 5 10 3.6 9 11.0 8.4 0.7 5.0 4.0 8 0 0.3 6.4 6.0 10.0 330.0 84 Outcrop Portal Type 0.0 67000 5 610 1.7 90.00 0.10 5.00 46 45000 60 7 10 30 1.6 0 1.0 510.5 1.3 5.0 11.0 34 3500 0.7.9 85.0 10.0 4.0 81 Outcrop Portal Type 0.0 70000 5 50 1.9 110.00 0 0.10 7.10 59 40 46000 31 0 90 0.7 10500.0 530.7 0.9 5.0 15.0 6 3700 0.5 3.5 9.0 0.0 5. 83 Outcrop Portal Type 0.10 57000 5 350 1.5 110.00 600 0.10 6.30 4 4 47000 30 16 0 360 0.9 10 18.0 440 1.3 0.6 5.0 7.0 38 0.6 3.3 69.0 0.0 5.0 871 0359 33 Rhyolite Type 0. 50 41 860 0.9 50 0.1 30 9 63 17000 68000 15 4 150 3. 1500 1.0 89 5.0.5 5 1 18 00 0.0 1.0 6 10 170 879 0046S 10 0 Rhyolite Type 0. 30 91 660 0.4 110 1 0.1 30 9 10 0 50 4 95.7 700 6.0 54 5.4 4. 5 1 10 36 0.0 7.0 3 5 4 853 0357 3 33 Rhyolite Type 0.3 66000 980 0.6 80 1800 0.1 30 9 4 8000 70 10 90 --- 3700 5.0 45 13.0 3.8 5 1 0 53 0.40 1.0 8 64 85 0357 13 3 Rhyolite Type 0. 50000 00 70 0.6 60 600 0.1 10 1 39 8000 57000 4 00 10 4.0 3 6.0 55 5.1 6.8 5 1 13 79 0.40 9.4 1 6 9 973 96011 30 45 Rhyolite Type 0.1 50 00 1070 1.8 60 0.1 0 13 140 0 48000 18 4 30.8 5 7.0 310 4.3 1.3 5 0.0 9.3 9 0 9 974 96011 45 60 Rhyolite Type 0.4 60 00 1010 0.9 60 500 0.1 0 14 160 10 56000 7 140 5.1 3 8.0 40 3.9 1. 5 1 1 00 0.0 7. 0-.9 0 35 95 98197 0 15 Rhyolite Type 0.1 100 70 0.4 90 3 0.1 60 8 180 78000 176000 4 800 77 4.1 3 3.0 64 4.8.5 5 7 0.0 8. 1 5 9 951 98197 15 30 Rhyolite Type 0.1 95000 0.4 50 40 0.1 70 15 00 150000 4 66000 85 6.4 1700 9.0 330 5.7.7 5 1 7 84 0.0 11.0 3 6 5 914 96016 09 15 Siltstone Type 0. 60 5 540.1 90 7700 0.1 5 50 3 36000 40 11 10 1.8 17000 16.0 30 3.0. 5.0 7 40 3600 0.40.9 69 0 8 804 0031 35 50 Siltstone Type 0. 40 5 630 1.6 110 8700 0.1 30 69 68 0 0 4 00 330 1.4 10 3.0 380 4.9 5.0 5.0 8 3 3500 0.50.7 65 0 15 100 0041 49 56 Siltstone Type 0.3 40 5 1.3 140 8500 0.1 8 55 5 48000 30 15 0 50 0.8 18000 14.0 500 3.3.3 5.0 7 8 3 0.60 3.8 71 0 34 960 9809 16 131 Siltstone Type 0.1 00 6 780.1 150 0.1 5 51 00 50 6 10 310 1. 17000 19.0 380 4.3 1.1 5.0 8 3 3800 0.60 4.0 69 10 38 964 98147 7 81 Siltstone Type 0.1 77000 7 650.3 160 800 0.1 10 64 75000 40 8 15000 190 1.8 15000 31.0 50 3.6.4 5.0 6 40 800 0.50.7 96 0 39 984 97035 67 70 Siltstone Type 0. 70 8 770. 70 3500 0.1 10 77 15 15000 50 16000 160 3.6 15000 30.0 440 3.0.3 5.0 8 36 3 0.60 3.4 98 0 70 957 98197 130 140 Siltstone Type 0.1 60 4 70. 160 6800 0.1 8 44 5 60 68000 13 10 10 1. 10 13.0 430 1.0.0 5.0 8 45 3 0.50 4.5 68 0 16 877 0359 157 165 Siltstone Type 0. 50 5 460.4 30 5 0.1 10 69 37 90 40 18 10 60 0.7 10 6.0 370.1. 5.0 7 3 3 0.70 3.3 80 0 11 819 9808 148 15 Siltstone Type 0. 60 36 570.8 170 4500 0.1 6 60 78000 46000 16 10 150.0 0 4.0 330 3.9. 5.0 6 3 0 0.50 3.3 69 30 11 897 9815 108 11 Siltstone Type 0. 60 93 560.6 3 0.1 30 57 4 100 46000 3 15000 90 1. 7600 16.0 470.5.5 5.0 7 3 800 0.90 3. 80 0 5 9 98151 110.5 114 Siltstone Type 0.3 66000 00 740.0 10 6 0.1 40 49 75 45000 50 18 10 370. 10 0.0 440 4.4.7 5.0 9 43 0.30 3.3 77 0 13 940 0034 13 138 Siltstone Type 0.1 7000 00 990.8 10 0 0.1 0 59 4 88000 87000 17 10 150.0 0 0.0 430 3. 3.0 5.0 7 38 0 0.70 3.7 78 0 0 99 0033 105.5 110 Siltstone Type 0. 8000 1.3 180 9800 0.1 60 77 44 75000 90 3 17000 560.6 15000 6.0 460 3.0 3.1 5.0 10 36 0.60 3.7 0 37 883 98198 10 0 Sub-Arkosic Wacke Type 0.1 5000 1 40 1.5 10 17000 0.1 10 0 19 70 0 1 0 640.6 1 7.0 30 1.6.1 5.0 5 11 1 0.70.0 8 10 3 898 9815 113 119 Sub-Arkosic Wacke Type 0. 65000 16 390 1.3 130 0 0.1 550 35 6 60000 7000 38 17000 470 1. 10 8.0 780 4.0 6. 5.0 4 110 0.40.5 130 0 9 813 0365 157 160 Sub-Arkosic Wacke Type 0. 60 6 640. 170 10800 0.1 0 45 10 70 45000 31 10 90 --- 10 7.0 500 3.4 3.8 5.0 4 78 0.70.7 69 0 1 881 0046S 31 37 Sub-Arkosic Wacke Type 0.1 45000 38 410 1.0 40 4 0.1 30 50 16 100 0 4 0 370 0.6 5700 19.0 30 1.8 1.8 5.0 4 14 0 0.50 1.6 55 6 30 96 0033 9 16 Sub-Arkosic Wacke Type 0. 75000 57 1 1.5 50 0.1 0 1 33 10 95000 11 6500 180 3.7 10 7.0 30.6.0 5.0 0 500 0.30 5. 0 10 38 861-Follow Up 0358 17 6 Breccia Type 56000 370 1 0.9 69 600 0. 58 180 13 53500 6000 9 00 310 1.4 3 10.0 3.9 3.9 0.7 5 18 0.66 4.1 57 8 1 803-Follow Up 0031 83 94 Type 0 0 150. 89 30 0. 11 71 60 100 0 1 50 0. 1.0 4.9 0.0 0.7 5 6 1800 0.69. 33 15 15 970-Follow Up 97060 11 30 Type 10 490 53 1.6 150 7000 0. 31 56 3 165000 30 10 40 660 0.9 1600 1.0 4.9 9.4 0.7 6 5 1600 0.83.0 31 11 13 998-Follow Up 0041 91 104 Type 30 180 130.1 77 00 0. 3 56 130 10 37000 10 60 850 0.1 990 13.0 3.7 9.7 0.7 5 9 1 0.84 1.9 33 14 15 95-Follow Up 98197 0 15 Rhyolite Type 66000 90 1 0.5 4600 0. 59 10 30 9 80000 4 3500 98 1.1 4 3.5 8.6 4.1 0.7 1 10 360 0.3 8.9 1 6 6 971-Follow Up 96011 3 15 Rhyolite Type 6000 430 1 1.1 130 5 0. 35 130 80 10 78000 0 170 4. 3.9 9.0 3.9 0.7 17 0.43 6.6 1 17 5 980-Follow Up 97035 0 10 Rhyolite Type 60 680 1 0.5 560 40 0. 110 110 89 10 80000 1.3 1 3.4 16.0 8.4 1 1 18 350 0.39 9.4 7 7 886 98198 66 7 Sub-Arkosic Wacke Type 0. 45000 60 70 1.8 40 8000 0.1 500 18 18 00 6000 17 17000 860 --- 10 16.0 540.6 3.4 5.0 9 1 600 0.40.3 50 0 15 808 0365 10 0 Sub-Arkosic Wacke Type 0. 5000 65 190 10 8700 0.1 7 1 80 50 0 14 10 380 3.0 700 5.0 30 6. 1.6 5.0 4 7 1 0.50. 18 6 6 Type 987 97036 63 7 Sub-Arkosic Wacke 0.1 8000 00 0.5 150 4 0.1 0 30 0 66000 8000 1 10 6.3 600 9.0 40.0 1.7 5.0 3 7 1 0.50 1.8 3 6 7 997 0041 10 0 Sub-Arkosic Wacke Type 0.1 0000 80 0.4 180 0.1 0 10 46 47000 6000 17 10 150 1.8 6.0 80 0.9 3. 5.0 3 9 0.40 1.4 3 6 4 915 98151 1 10 Sub-Arkosic Wacke Type 0.1 70 00 980 1.5 60 1800 0.1 0 34 19 000 75000 8 6 580 3.6 16000 5.0 60 3.6 1.5 5.0 1 1 0.0 3.5 8 10 899 9707 0 10 Sub-Arkosic Wacke Type 0. 57000 00 710.4 60 0.1 40 11 130 5000 40 10 500 180.7 10 9.0 80 3.7 1.9 5.0 3 18 800 0.30 5.1 5 0 9 903 0049 0 7 Sub-Arkosic Wacke Type 0. 60000 00 750 0.7 00 3 0.1 160 1 14 90 66000 6 10 310 --- 1600 6.0 750. 1.8 5.0 6 13 00 1.00 3. 84 7 6 906 0049 71 8 Sub-Arkosic Wacke Type 0. 00 00 370 1.4 0 0 0.1 8 3 5 80 38000 31 30 380 1.9 000 10.0 500 3.4 4.8 5.0 4 13 1600 0.80.7 5 10 7 996 0041 0 10 Sub-Arkosic Wacke Type 0. 0 110 0.8 10 600 0.1 30 15 68 85000 7000 16 000 10 3. 00 10.0 1.1 4.0 5.0 5 6 1 0.60.1 7 8 5 807 0365 1 10 Sub-Arkosic Wacke Type 0.1 0 30 0.6 0.1 0 7 14 38000 5000 14 7500 190.0 6.0 150 1.1 1.6 5.0 3 7 0 0.40 1.4 19 5 8 88 98198 4 10 Sub-Arkosic Wacke Type 0. 0000 190 1.8 60 0000 0.1 110 3 44 76000 0 9 0 680 3.5 8.0 170 3.5 3.9 5.0 5 10 0.40 1.5 5 7 39 851 0357 10.9 13 Sub-Arkosic Wacke Type 0.1 000 500 00 0.5 10 0.1 70 13 7 30 0 6 6 70 --- 500 14.0 10.4 3.4 5.0 3 6 500 0.0 1. 9 3 33 816 9808 5 15 Sub-Arkosic Wacke Type 0. 30 500 40 1.3 80 0 0.1 10 16 57 60000 30 16 48000 390 1.7 6.0 190 3.1 7.5 5.0 3 7 1 0.90 1.3 4 9 14 861 0358 17 6 Breccia Type 0.3 50 500 860 1.0 180 0.1 70 11 13 40 50 18 10 310 3.9 0 6.0 330.3.3 5 4 19 1700 0.60 3.3 55 7 3 910 96016 44 59 Sub-Arkosic Wacke Type 0. 30 800 50 1.0 0 9 0.1 0 13 16 0 0 18 5000 370 1.1 700 10.0 70.1 6.7 5.0 5 7 0.80 1.7 7 8 Minimum 0.10 16000 5 6 0.40 50 0.10 3 6 1 8000 50 1 77 0 00 3 45 1 1 1 1 4 36.00 0 1 1 3 4.0 Maximum 0.40 100 1 5.70 830 65000.40 940 10 80 60000 176000 44 80 1 81 00 61 890 3 56 5 17 0 5800.00 48 170 40 330.00 Median 0.0 40 93 510 1.65 160 7 0.10 0 7 75000 40 18 10 330 3 9 3 4 5 5 16 1700.00 1 3 33 10.00 Average 0.17 4970 183 504 1.69 6 197 0.13 50 3 64 90518 48656 18 3646 47 4 603 1 336 5 5 5 5 4 1758.10 1 5 4 13 3.8 Standard Deviation 0.08 19699 1 358 0.84 169 13360 0.1 110 30 11 67346 6590 9 1677 97 8 590 8 154 5 6 1 3 30 1105.51 0 6 30 6 44.51 A-/14