Active microrheology: Brownian motion, strong forces and viscoelastic media

Similar documents
Force-induced diffusion in microrheology

Recent advances on glass-forming systems driven far from equilibrium

Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

Group of Complex Fluids Physics, Departamento de Física Aplicada, Universidad de Almería.

GEM4 Summer School OpenCourseWare

arxiv: v1 [cond-mat.soft] 9 Apr 2015

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Supporting Information. Even Hard Sphere Colloidal Suspensions Display. Fickian yet Non-Gaussian Diffusion

BROWNIAN DYNAMICS SIMULATIONS WITH HYDRODYNAMICS. Abstract

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

cooperative motion in sheared granular matter Takahiro Hatano

Rheology of concentrated hard-sphere suspensions

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Active microrheology of colloidal suspensions: simulation and microstructural theory arxiv: v1 [cond-mat.

Non-equilibrium phenomena and fluctuation relations

Fluctuations in the aging dynamics of structural glasses

arxiv: v1 [cond-mat.soft] 29 Nov 2012

Weak Ergodicity Breaking. Manchester 2016

ROBERT BROWN AND THE POLLEN STUFF

Experimental Colloids I (and I)

Direct observation of dynamical heterogeneities near the attraction driven glass

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Critical Phenomena under Shear Flow

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan

Colloidal glass transition. Studying the glass transition with confocal microscopy Eric R. Weeks Emory University (Physics)

Nonlinear viscoelasticity of metastable complex fluids

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Hydrodynamics, Thermodynamics, and Mathematics

The Truth about diffusion (in liquids)

Spatially heterogeneous dynamics in supercooled organic liquids

Statistical Mechanics of Jamming

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights

Part III. Polymer Dynamics molecular models

Turbulent Flows. g u

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Brownian motion and the Central Limit Theorem

Irreversibility and the arrow of time in a quenched quantum system. Eric Lutz Department of Physics University of Erlangen-Nuremberg

Entropic barriers, activated hopping, and the glass transition in colloidal suspensions

Major Concepts Langevin Equation

4. The Green Kubo Relations

Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer

Fractional Derivatives and Fractional Calculus in Rheology, Meeting #3

Diffusing-wave spectroscopy: From particle sizing to micro-rheology. Prof. Yacine Hemar Food Group School of Chemical Sciences

Overshoots in stress-strain curves: Colloid experiments and schematic mode coupling theory

One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods

Correlation of Two Coupled Particles in Viscoelastic Medium

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev

Clusters in granular flows : elements of a non-local rheology

Protein Dynamics, Allostery and Function

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Sliding Friction in the Frenkel-Kontorova Model

Glass Transition as the Rheological Inverse of Gelation

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

Dresden, September 20-24, 2010 by Hartmut Löwen

Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives

arxiv:cond-mat/ v1 8 Nov 2005

Energy dissipating structures generated by dipole-wall collisions at high Reynolds number

15.3 The Langevin theory of the Brownian motion

Polymer Dynamics and Rheology

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

XPCS and Shear Flow. Wesley Burghardt Department of Chemical & Biological Engineering Northwestern University

Entropic Crystal-Crystal Transitions of Brownian Squares K. Zhao, R. Bruinsma, and T.G. Mason

Dynamical fluctuation effects in glassy colloidal suspensions

Flow of Glasses. Peter Schall University of Amsterdam

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I

PHYSICAL REVIEW E 72,

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods

HIGH FRICTION LIMIT OF THE KRAMERS EQUATION : THE MULTIPLE TIME SCALE APPROACH. Lydéric Bocquet

Diffusion in the cell

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

c 2009 Michael Dean Bybee

Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids

Pair diffusion in quasi-one- and quasi-two-dimensional binary colloid suspensions

Heat Transport in Glass-Forming Liquids

Lagrangian Statistics. of 3D MHD Convection. J. Pratt, W.-C. Müller. Boussinesq Simulation. Lagrangian. simulation. March 1, 2011

Anomalous diffusion in cells: experimental data and modelling

Nano Particle Image Velocimetry (npiv); Data Reduction Challenges

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009

3.1 Hydrodynamic interactions in a Gaussian chain

Inhomogeneous elastic response of amorphous solids

Linear Response in Classical Physics

Mesoscale fluid simulation of colloidal systems

Effective Temperatures in Driven Systems near Jamming

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses

Noise, AFMs, and Nanomechanical Biosensors

arxiv:cond-mat/ v2 [cond-mat.soft] 19 May 2004

Turbulent Mixing of Passive Tracers on Small Scales in a Channel Flow

Transcription:

OR1394 DFG Research Unit Nonlinear Response to Probe Vitrification Active microrheology: Brownian motion, strong forces and viscoelastic media Matthias Fuchs Fachbereich Physik, Universität Konstanz New Frontiers in Non-equilibrium Statistical Physics 2015

Outline Intro to dense colloidal dispersions Active microrheology: Theory Delocalization transition Length Scales & Populations Steady state motion Transient dynamics 2 / 33

to dense colloidal dispersions Intro to dense colloidal dispersions Intro 3 / 33

Brownian motion Stokes Einstein Sutherland: D 0 = k BT ζ 0 mean squared displacement (r(t) r(0)) 2 = 6D 0 t 4 / 33

Displacement fluctuations in glass Binary glass in d = 2 finite displacements h(ri (t) r i )2 i < with center of trajectory: R t 1 r i = t 0 dt ri (t) [Klix, Ebert, Weysser, MF, Maret, Keim, Phys. Rev. Lett.109, 178301 (2012) ] 5 / 33

microrheology: Theory Active microrheology: Theory Active 6 / 33

Active microrheology Hard-sphere suspension Fluid and glass states probe x z Probe displacement under strong forces Tails, heterogeneities etc. Parameters: φ and F d host volume fraction φ F >> kt/d 7 / 33

Microscopic (statistical) description Model: Interacting Brownian particles, no HI (D 0 = k BT ζ 0 ) Smoluchowski equation: Micro rheology t Ψ = Ω Ψ Ω = N D 0 i ( i βf i ) + D s s ( s βf s ) D s s F ex i ITT force-velocity relation (nonlinear, exact) ζ v t =F ex, ζ = ζ 0 + 1 3k B T 0 dt F s e Ω irr t F s (e) [ Gazuz, Puertas, Voigtmann, MF, Phys. Rev. Lett. 102, 248302 (2009)] 8 / 33

Microscopic (statistical) description (II) Mode coupling approximation: r, t F G s (r, t) Fourier transform Φ s q(t) t = 0 probe distribution function probe correlator Evolution equation: t Φ s q(t) + 1 τ q (F ) Φs q(t) + Parallel relaxation channels : t 0 m q (t t ) t Φ s q(t )dt = 0 m q (t) = F {Φ s q(t), Φ host q (t), F } Input (full MCT): Equilibrium structure of the host at φ [ Lang et al., PRL 105, 125701 (2010)] 9 / 33

transition Delocalization transition Delocalization 10 / 33

Tracer Nonergodicity Parameter in Real Space f s (r, t) = limt ρs (r, t) ϕ =.537 11 / 33

Delocalization transition: phase diagram (MCT) glassy host delocalized probe fluid host glassy host localized probe 12 / 33

Delocalization transition φ = 0.537 type B transition 13 / 33

Scales & Populations Length Scales & Populations Length 14 / 33

Exponential tails Glassy host F threshold localized probe MCT, φ = 0.516 Marginal probability distribution parallel to the force [A. Puertas (U. Almeria), unpublished] 15 / 33

Probe distribution function G s (z, t ) Localized probe G tail s [ exp z ] ξ(f ) Growing correlation length ξ 16 / 33

state motion Steady state motion Steady 17 / 33

Probe motion in force direction: average drift δz(t) GLASSY HOST MCT φ = 0.516 x F z δz(t) [d] 10 4 F = 10 [kt/d] 10 3 F = 20 delocalized probe F = 30 10 2 F = 35 t 10 1 F = 40 F = 45 F 10 0 F = 50 localized probe 10-1 10-2 10-3 10-4 10-3 10-2 10-1 10 0 10 1 10 2 10 3 t [d 2 /D 0 ] Delocalization transition 18 / 33

Probe motion in force direction: average drift δz(t) FLUID HOST MCT φ = 0.515 x F z δz(t) [d] 10 4 10 3 10 2 10 1 10 0 10-1 10-2 10-3 10-4 F [kt/d] = 1 F = 5 F = 10 F = 20 F = 30 F = 40 F = 50 10-5 10-6 10-4 10-2 10 0 10 2 10 4 10 6 t [d 2 /D 0 ] t ---- linear response (FDT) Steady probe velocity for long times friction coefficient 19 / 33

Nonlinear friction coefficient: v = [ζ(f )] 1 F x z F ζ = ζ(f ) Force-thinning ζ/ζ 10 6 10 5 10 4 φ 10 3 10 2 φ = 0.500 (fluid) 10 1 0.510 (fluid) 0.515 (fluid) 10 0 0.516 (glass) 0.537 (glass) 10-1 0.62 (LD Sim.) 10-2 10 0 10 1 10 2 F [kt/d] F critical 20 / 33

Probe motion in perpendicular direction: δx 2 (t) GLASSY HOST x F z δx 2 (t) [d 2 ] 10 2 10 1 10 0 10-1 F = 10 [kt/d] F = 20 F = 30 F = 35 F = 40 F = 45 F = 50 F D orth t delocalized probe localized probe MCT φ = 0.516 10-2 10-3 10-4 10-3 10-2 10-1 10 0 10 1 10 2 10 3 10 4 t [d 2 /D 0 ] Delocalization transition Diffusive motion for long times 21 / 33

Nonlinear diffusion coefficient - perpendicular direction δx 2 D orth t x z F D orth /D 0 10 2 φ = 0.500 (fluid) 10 1 0.510 (fluid) 0.515 (fluid) 10 0 0.516 (glassy) 0.537 (glassy) 10-1 0.62 (LD Sim.) 10-2 10-3 10-4 φ 10-5 F critical 10-6 10 0 10 1 10 2 F [kt/d] Orthogonal diffusion enhanced by increasing F 22 / 33

Stokes-Einstein Relation Equilibrium: D(ϕ)ζ(ϕ) kt Nonequilibrium: D orth (ϕ, F )ζ(ϕ, F ) kt = 1 = α(ϕ, F ) α-1 14 12 10 8 2.5 2 1.5 1 0.5 0 0 1 2 3 4 5 φ = 0.500 (fluid) 0.510 (fluid) 0.515 (fluid) 0.516 (glassy) 0.537 (glassy) 0.62 (LD sim.) 6 4 2 0 10 0 10 1 10 2 F [kt/d] 23 / 33

dynamics Transient dynamics Transient 24 / 33

Probe motion in force direction: superdiffusion MD Simulations - Yukawa mixture Winter et al., PRL 108 (2012) MSD δz 2 (t) [δz(t)] 2 x F z MSD (parallel) 25 / 33

Probe motion in force direction: superdiffusion Langevin Dynamics simulations φ = 0.62 MSD δz 2 (t) [δz(t)] 2 x F z δz 2 (t) - [δz(t)] 2 [d 2 ] 10 2 10 1 10 0 10-1 10-2 F = 40 [kt/d] F = 50 F = 60 F = 70 F = 80 F = 100 F = 120 F = 200 t 10-3 10-2 10-1 10 0 10 1 10 2 t [d 2 /D 0 ] [A. Puertas (U. Almeria), unpublished] 26 / 33

Probe motion in force direction: superdiffusion Brownian Dynamics simulations (2D) MSD δz 2 (t) [δz(t)] 2 x z F 27 / 33

Evolution of the probe distribution function G s (z, t) Delocalized probe G s (z,t) 10 0 10-1 t [d 2 /D 0 ] = 0.21 0.42 0.84 1.68 3.36 6.72 t 10-2 0 2 4 6 8 10 12 z [d] 28 / 33

Evolution of G s (z, t): Delocalized probe MCT, φ = 0.537, F = 50kT/d G s (z,t) 10 0 10-1 t [d 2 /D 0 ] = 0.21 0.42 0.84 1.68 3.36 6.72 t LD Simulations, φ = 0.62, F = 100kT/d G s (z,t) 10 0 10-1 t [d 2 /D 0 ] = 1.0 2.5 5.0 10.0 20.0 10-2 0 2 4 6 8 10 12 z [d] 10-2 0 2 4 6 8 z [d] [A. Puertas (U. Almeria), unpublished] 29 / 33

Trajectories Brownian dynamics simulations individual trajectories in the glassy host intermittent dynamics ζ s 10 6 10 4 10 2 ϕ= 0.79 ϕ = 0.81 10 0 10 0 10 1 10 2 10 3 F ex d [Harrer, unpublished] 30 / 33

Evolution of Gs (z, t): Delocalized probe 100 Gs(z,t) Probe trajectories Brownian dynamics simulations t [d2/d0] = 0.21 0.42 0.84 1.68 3.36 6.72 10-1 t 10-2 0 2 4 6 8 10 12 z [d] Active and inactive probes F 31 / 33

Conclusions micro-rheology delocalization threshold Fc ex force-induced diffusion force two population behavior close to depinning rare large excursions on diverging length scale k B T/σ 32 / 33

Acknowledgements Gustavo Abade, Markus Gruber (Konstanz) Antonio Puertas (Almeria) Thomas Voigtmann (DLR, Düsseldorf) Igor Gazuz, Christian Harrer, Manuel Gnann (Konstanz) David Winter, Jürgen Horbach (Düsseldorf) movies/discussion: Peter Keim (Konstanz), Stefan Egelhaaf (Düsseldorf), Rut Besseling (Edinburgh), Eric Weeks (Emory) DFG Research Unit Nonlinear Response to Probe Vitrification Thank you for your attention 33 / 33