General Physics I Spring Forces and Newton s Laws of Motion

Similar documents
Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Physics 101 Lecture 5 Newton`s Laws

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

Dynamics: Forces and Newton s Laws of Motion

Dynamics; Newton s Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter 3 The Laws of motion. The Laws of motion

Physics 111 Lecture 4 Newton`s Laws

PS113 Chapter 4 Forces and Newton s laws of motion

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Free-Body Diagrams: Introduction

CHAPTER 4 TEST REVIEW -- Answer Key

An Introduction to Forces Forces-part 1. Forces are Interactions

PHYS 101 Previous Exam Problems. Force & Motion I

Chapter 4 Force and Motion

Physics B Newton s Laws AP Review Packet

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Dynamics: Forces and Newton s Laws of Motion

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

General Physics I Spring Applying Newton s Laws

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

Dynamics Multiple Choice Homework

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Lecture 5. Dynamics. Forces: Newton s First and Second

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

A Question about free-body diagrams

Chapter 4 Newton s Laws

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Base your answers to questions 5 and 6 on the information below.

Unit 5 Forces I- Newton s First & Second Law

Written homework #5 due on Monday Online homework #5 due on Tuesday. Answer keys posted on course web site SPARK grades uploaded Average = 74.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

for any object. Note that we use letter, m g, meaning gravitational

AP Physics Free Response Practice Dynamics

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Student AP Physics 1 Date. Newton s Laws B FR

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem.

Chapter 5 Newton s Laws of Motion

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

3. What type of force is the woman applying to cart in the illustration below?

Forces and Newton s Laws Notes

Forces I. Newtons Laws

Chapter 4. The Laws of Motion

CHAPTER 4 NEWTON S LAWS OF MOTION

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Friction Can Be Rough

Physics 12 Final Exam Review Booklet # 1

Chapter 4. Forces in One Dimension

HATZIC SECONDARY SCHOOL

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

Unit 5 Forces I- Newtonʼ s First & Second Law

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

Chapter 5 Force and Motion

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit.

Physics Pre-comp diagnostic Answers

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck?

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Physics 12 Unit 2: Vector Dynamics

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

Chapter 5. The Laws of Motion

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion

Unit 1: Mechanical Equilibrium

Newton s Laws.

Forces. A force is a push or a pull on an object

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

An Introduction to Forces Identifying Forces. An Introduction to Forces Forces-part 1. Forces are Interactions. What Is a Force? Identifying Forces

PH201 Chapter 5 Solutions

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Topic: Force PHYSICS 231

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law

A force is a push or a pull.

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

Newton s First Law. Newton s Second Law 9/29/11

Chapter 2. Forces & Newton s Laws

Show all workings for questions that involve multiple choice.

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

Dynamics: Forces. Lecture 7. Chapter 5. Course website:

PSI AP Physics B Dynamics

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations.

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

Newton s First Law and IRFs

Name: Unit 4 Newton s 1 st & 3 rd Law

Transcription:

General Physics I Spring 2011 Forces and Newton s Laws of Motion 1

Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor exerts a force on the trailer. Importantly, the trailer also exerts a force on the tractor at the same time. Forces result from interactions between different objects or parts of a system (e.g., the tractor and the trailer). A completely isolated object cannot exert a force or have a force exerted on it because there is nothing for it to interact with. Contact forces are forces that arise from direct contact between interacting objects. Examples: tension, spring force, friction, normal force. Long-range forces are exerted across empty space. Examples: gravitational force, electric force, magnetic force. 2

Force is a Vector Quantity Force is a vector quantity. It has a magnitude and a direction. In addition, numerous experiments have shown that if more than one forces act simultaneously at a single point, the effect is the same as if a single force, equal to the vector sum (resultant) of all the forces, acted at the point. The resultant force is called the net force. Its symbol is F. net The SI unit of force is the newton (N). 3

Two forces with magnitudes 3.0 N and 4.0 N act on an object. Which one of the following could not be the magnitude of the net (resultant) force? 1. 1.0 N 2. 5.0 N 3. 6.6 N 4. 7.3 N 4

Workbook: Chapter 4, Question 1, 2 5

Newton s First Law It is clear that an object that is at rest will stay at rest unless it is disturbed. What about when an object is in motion? Will it stay in motion or come to rest on its own? To see what happens, we launch a hockey puck in exactly the same way on three different surfaces. The puck goes farther as the surfaces get smoother. It becomes clear that if a surface were perfectly smooth, the puck would not stop! It would travel at constant speed in a straight line until it was disturbed. 6

Newton s First Law What do we mean by disturbed? To change the motion of the puck, someone could use a hand to deflect or stop it. The hand applies a force to the puck. (Just as a hand applied a force to the puck to start its motion.) We see that an object will maintain its motion unless an unbalanced force causes the motion to change. This is the essence of Newton s First Law. If there is no net force acting on an object, then if it is at rest, it will remain at rest; if it is moving, it will continue to move in a straight line with constant speed. 7

Inertia Newton s first law tells us that an object tends to maintain its current state of motion. In other words, it exhibits a resistance to changing its motion. This resistance to changes in motion is called inertia. It is a property of all objects. If you launch two pucks glued together across an air table, they will move with half the speed of a single puck launched in the same way. Thus, two pucks undergo half the change in motion (i.e., change in speed for straight-line motion) as one puck under the same launch conditions. Hence, two pucks have twice as much inertia as one puck. The mass of an object is a quantitative measure of its inertia. The SI unit of mass is the kilogram (kg). 8

Some Common Forces Spring force: If a spring is compressed or stretched, it will exert a force on the objects to which it is attached (at both ends). This is called the spring force. The magnitude of the spring force increases with the extension (or compression) of the spring. 9

Some Common Forces Tension: If the ends of a rope (or string) are pulled until the rope is taut, the rope will exert a force on the objects to which it is attached (at both ends). This force is called tension. 10

Some Common Forces Weight: The weight of an object is the gravitational force that the Earth exerts on it. The gravitational force acts vertically downward on all objects; therefore, the weight of every object is always vertically downward. 11

Some Common Forces Normal force: Consider a book lying at rest on a horizontal table. The book s weight is one force that acts on it. Can that be the only force? No! Otherwise, the motion of the book would change due to the presence of a net force. The other force acting on the book is in the vertically upward direction and arises because of the contact between the book and the table. This contact force is the normal force. More precisely, the normal force is a contact force that acts in a direction perpendicular to the surfaces that are in contact. Here, normal means perpendicular. Ultimately, the normal force is due to the slight displacement of atoms from their usual positions. 12

Some Common Forces Friction: Like the normal force, friction is a contact force. However, friction acts parallel to the surfaces that are in contact. Friction also always opposes the motion of one surface relative to the other. If an object is in contact with a surface and moving relative to it, the friction force is called kinetic friction. If an object is not moving relative to a surface and friction prevents it from moving, the friction force is called static friction. 13

Workbook: Chapter 4, Questions 4, 5 14

Force and Changes in Motion We will use a spring to apply a constant force to a block that moves over a very smooth surface so that friction can be neglected. The magnitude of the force can be varied by changing the extension of the spring. The motion of the block will be measured by a motion detector. The velocity-versus-time graph that is generated when a constant force acts on a block is shown to the right. We see that a constant force results in a constant acceleration. 15

Force and Changes in Motion Next, we investigate how the acceleration depends on the applied force. To do this, we conduct the experiment with the spring extension at a certain value. Then we repeat the experiment with the spring extension doubled, so the magnitude of the force is doubled. Repeat the experiment with the magnitude of the force tripled, and so forth. The results are shown to the right. We see that the acceleration increases by the same factor as the force, i.e., the acceleration is directly proportional to the force. 16

Force and Changes in Motion Next, we investigate how the acceleration depends on the number of blocks with the force held constant throughout. To do this, we conduct the experiments with the spring extension always at the same value. The first experiment is done with one block. Repeat the experiment with two blocks glued together, and so forth. The results are shown to the right. We see that the acceleration decreases by the same factor as the number of blocks increases, i.e., the acceleration is inversely proportional to the number of blocks. 17

Force and Changes in Motion Recall that two blocks have twice the inertia as one block. Since mass is a direct measure of inertia, two blocks have twice the mass as one block. Thus, with the force held constant, the acceleration is inversely proportional to the mass. For a given force, we see that an object with a greater mass has a smaller acceleration. Thus, the mass of an object determines its acceleration in response to an applied force. 18

Newton s Second Law From our experiments we see that acceleration is directly proportional to force and inversely proportional to mass. Many experiments have shown that the acceleration is actually proportional to the net force acting on an object. Thus, we can write a = F net m where Fnet = F + F + is the vector sum of all the forces 1 2... acting on the object and m is the mass of the object. The acceleration is in the same direction as the net force. This relation is Newton s Second Law. Note that since Fnet = ma, the unit of force (newton) is equal to the unit of mass times the unit of acceleration., 19

Workbook: Chapter 4 Questions, 9, 14, 15, 16 20

Textbook: Chapter 4, Problem 13 (Homework) 21

Free-Body Diagrams A free-body diagram is a diagram showing all the forces acting on an object. When solving problems using Newton s second law, drawing a free-body diagram is essential. Use the following steps: (1) Identify all the forces acting on the object. (2) Draw an x-y coordinate system with the object at the origin. (The object is represented by a dot or small circle.) (3) Draw and label vectors representing the forces. The tails of the force vectors should be attached to the object. The lengths of the vectors should be proportional to their magnitudes. 22

Free-Body Diagrams Consider a book that accelerates to the right as it is pushed by a hand across a rough horizontal table. The forces acting the book are its weight, the normal force, kinetic friction, and the force applied by the hand to the book. f k y n F push x w 23

Which diagram correctly represents an elevator that is moving upward and slowing to a stop? The elevator is suspended by a cable. 24

Workbook: Chapter 4, Question 19 Textbook: Chapter 4, Problems 31, 35 (Homework) 25

Forces and Interactions Forces result from an interaction between two objects. For example, friction and the normal force arise from the interaction between two objects due to contact between the objects. A completely isolated object cannot exert or experience a force. Consider two interacting objects A and B. Each object experiences a force due to the interaction. Object A exerts a force on Object B and Object B exerts a force on Object A. The two interaction forces are collectively called an action/reaction pair. Note that one force acts on A and the other acts on B. Thus, the forces act on different bodies. 26

Newton s Third Law Newton s third law is concerned with the forces that constitute an action/reaction pair. Newton s third law states that If object A exerts a force on object B, then object B simultaneously exerts a force that is equal in magnitude but opposite in direction on object A. Newton s third law holds regardless of the motion of the objects. 27

Newton s Third Law: Example 28

Newton s Third Law: Example The car accelerates because of the force that the road exerts on the tires. The ground experiences a force of equal magnitude, but does not move perceptibly because the mass of the Earth is very large (so negligible acceleration). Can you identify other action/reaction pairs? 29

System and Environment To study the motion of a group of objects, it useful to divide the group into two categories: the system and the environment. The system comprises the specific objects whose motion we wish to study. All other objects comprise the environment. Forces exerted by the environment (objects outside the system) on objects within the system are called external forces. Forces of interaction between objects within the system are called internal forces. Internal forces are action/reaction pairs, both within the system (but acting on different parts of the system). Free-body diagrams only need to be drawn for the system. 30

Workbook: Chapter 4, Question 23 31