STRUCTURAL ANALYSIS TYPICAL ANALYSIS - POLE LOCATION, ANTENNA SIZING AND SOILS PROPERTIES REQUIRED FOR SPECIFIC ANALYSIS.

Similar documents
2/23/ WIND PRESSURE FORMULA 2. PERCENT OF ALLOWABLE STRESS 3. FATIGUE DESIGN

Chapter 4 Seismic Design Requirements for Building Structures

Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I)

General Comparison between AISC LRFD and ASD

Chapter 1 Introduction- Concept of Stress

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

Equilibrium in Three Dimensions

APPENDIX A DEFINITIONS, NOTATIONS, AND SI CONVERSION FACTORS

8/11/14. Sheet 1. Colonial Flag 9390 So 300 West Sandy, UT

Mechanics of Materials

Structural Calculations For:

STRUCTURAL ANALYSIS REPORT. WHISPER ft GUYED WIND TURBINE TEP # Revision 0 November 6, 2006 PORTABLE DOCUMENT FORMAT.

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No.

1.3 Working temperature T 200,0 1.4 Working environment. F... Guided seating. Light service. Cold formed springs. Music wire ASTM A228

7.2 Design of minaret: Geometry:

World Shelters. U-Dome 200. Dome Shelter. Engineering Report: Dome Structure ER October South G St., Suite 3 Arcata, CA USA

6593 Riverdale St. San Diego, CA (619) Page of

6593 Riverdale St. San Diego, CA (619) Page of. Client: ProVent PV1807 Description: CBKD-92 ( **) Unit: ZF180

Design of Reinforced Concrete Beam for Shear

Presented by: Civil Engineering Academy

10012 Creviston DR NW Gig Harbor, WA fax

NICE-PACK ALCOHOL PREP ROOM PLATFORM CALCULATIONS

Hyperbolic Soil Bearing Capacity

Design of Reinforced Concrete Beam for Shear

ALUMINUM STRUCTURAL PLATE HEADWALLS AASHTO LRFD BASIS OF DESIGN

Palm Frond Calculations

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

Earthquake Loads According to IBC IBC Safety Concept

For sunshades using the Zee blades wind loads are reduced by 10 psf.

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

QUAKE BRAKE TM MODEL QBC-12 SEISMIC SWAY BRACING KIT FEATURING

HELIODYNE SOLAR COLLECTOR RACK STRUCTURES FOR HELIODYNE, INC. Structural calculations. Gobi 410 at 45 degrees. for WCM HELIODYNE RACK

Steel Post Load Analysis

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3

, and M A , R B. , and then draw the shear-force and bending-moment diagrams, labeling all critical ordinates. Solution 10.

ABS Consulting Project No

276 Calculus and Structures

Errata (Includes critical corrections only for the 1 st, 2 nd & 3 rd reprints)

Lecture-04 Design of RC Members for Shear and Torsion

Steel Cross Sections. Structural Steel Design

Preferred practice on semi-integral abutment layout falls in the following order:

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Figure 1: Throwing arm dimensions

Trigonometry. Pythagorean Theorem. Force Components. Components of Force. hypotenuse. hypotenuse

A q u a b l u e a t t h e G o l d e n M i l e

6593 Riverdale St. San Diego, CA (619) Page of

Chapter 2. Design for Shear. 2.1 Introduction. Neutral axis. Neutral axis. Fig. 4.1 Reinforced concrete beam in bending. By Richard W.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

SEAoT State Conference Seminar Topics. Early knowledge needed. 11/5/2009. Wind Versus Seismic Which Controls? The Code

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

Support Idealizations

A design Model for Pile Walls Used to Stabilize Landslides

Characteristics of a Force Loads on Structures. Dead Load. Load Types Dead Live Wind Snow Earthquake. Load Combinations ASD LRFD

Edward C. Robison, PE, SE. 02 January Architectural Metal Works ATTN: Sean Wentworth th ST Emeryville, CA 94608

Created by Neevia docuprinter LT trial version

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX A PRELIMINARY FLOODWALL DESIGN

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:


[5] Stress and Strain

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

Errata (Includes critical corrections only for the 1 st, 2 nd & 3 rd reprints)

Section Downloads. Section Downloads. Handouts & Slides can be printed. Other documents cannot be printed Course binders are available for purchase

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil)

Project Name Structural Calculation for Feature Pressing

Innovative Products February 2016

Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers Seismic and wind loading

Gauge Gauge.119" thick 07 7 Guage.179" thick

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods

CHAPTER 6: ULTIMATE LIMIT STATE

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

PECivilExam.com. Copyright 2015 Pecivilexam.com all rights reserved- E-Book Geotechnical Depth Exam: 80 problems

P.E. Civil Exam Review:

ENERGY DIAGRAM w/ HYSTERETIC

Structural Analysis Report of Anchorage Design for Propane Exchange Cage Aluminum

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

1 of 7. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ

Visit Abqconsultants.com. This program Designs and Optimises RCC Chimney and Foundation. Written and programmed

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

my!wind Ltd 5 kw wind turbine Static Stability Specification

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

Principles of Finite Element for Design Engineers and Analysts. Ayman Shama, Ph.D., P.E., F.ASCE

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

EARTHQUAKE ANALYSIS with SAP2000

Example 1 - Single Headed Anchor in Tension Away from Edges BORRADOR. Calculations and Discussion

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER.

AISC LRFD Beam Design in the RAM Structural System

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE

Huntly Christie 1/26/2018 Christie Lites 100 Carson Street Toronto, ON M8W3R9

Statics Principles. The laws of motion describe the interaction of forces acting on a body. Newton s First Law of Motion (law of inertia):

Transmission Line Design Structures & Foundations TADP 549

Jonathan Fraser METEOR Project P07102 Environmental Test Stand Project Manager/Lead Engineer Detail Design Review Report

STRUCTURAL CALCULATIONS

Appendix K Design Examples

Application of Capacity Spectrum Method to timber houses considering shear deformation of horizontal frames

Transcription:

STRUCTURL NLYSIS TYPICL NLYSIS - POLE LOCTION, NTENN SIZING ND SOILS PROPERTIES REQUIRED FOR SPECIFIC NLYSIS. 9.5 FOOT BOVE GRDE, 1" DI. CONCRETE NTENN POLE WITH POLE TOP '-0" DIMETER BY 5'-6" CYLINDRICL EMS NTENN, ND (1) 5 SQ FOOT LUMINIRE ND 8 FOOT RM T 0 FEET. LSO ' WIDE BY 6' HIGH BNNER CENTERED T 6 FEET. PRESTRESSED CONCRETE POLE: BP00mm DI. X 9M : 9.5 FEET BOVE GRDE. LODING PER UNIFORM BUILDING CODE, 1997 WIND LODING: 70 MPH WIND ZONE ERTHQUKE LODING: ZONE 4, ESSENTIL FCILITY PREPRED MY 6, 00 PREPRED BY: MERON POLE PRODUCTS; STEVEN J. BULL, P.E. FOR: SOUTHERN CLIFORNI EDISON 1 OF 11

Structural Calculations for BP-00 x 9, (1' dia. x 9.5' above grade) pole: - 70 MPH Zone, Exposure C - Per Uniform Building Code, 1997 edition - (1) ' x 5.5' pole top, 500 LB top antennas and housing - (1) 5 square foot effective area luminaire arm and luminaire @ 0' - (1) 1" dia by 9.5' above grade concrete pole - (1) ' wide by 6' high banner, 6' above grade. Wind Loading: (Section 1618) F : ( area) P w I w C e C q where: area EP of component P w wind pressure 1.6 PSF I w wind importance factor 1.15 (UBC, table 16-K, essential facility) C e C q height, exposure, and gust factor coefficient (UBC, table 16-G 1.06 TO 1.) pressure coefficient (UBC, table 16-H (7), round lightpole (1.4)(/) STREETLIGHT LUMINIRE ND RM: POLE: ( 1in) ( 5.5ft) I e earthquake importance factor 1.5 (UBC, table 16-K, essential facility) POLE TOP antenna assembly: ( ) ( 1) 5ft 1ft 144in 1.6 lb ( 1.15) ( 1.1) ( 1.4) ft 1.6 lb ( 1.15) ( 1.) ( 1.4) ft 15 lb 97 lb 0'-15': ( 1in) ( 15ft) 1ft 1in 1.6 lb ( 1.15) ( 1.06) ( 1.4) ft 15 lb 15'-0': ( 1in) ( 15ft) 1ft 1in 1.6 lb ( 1.15) ( 1.) ( 1.4) ft 50 lb OF 11

BNNER: 1 ( ) ft6ft1.6 lb ( 1.15) ( 1.) ( 1.4) ft Working Moment at Groundline Due to Wind: 449 lb M w : 5.5 979.5 ( 150) ( 157.5) ( 50.5) ( 4496) lbft M w BSE SHER: 5790lbft V base : ( 97 15 15 50 449) lb V base 116 lb DED LOD MOMENT ( due to luminaire and mast arm): D : [ 50lb( 8ft 1.5ft) ] ( 0lb4ft) D 595 lbft DEFLECTION CLCULTIONS (pole top) T FULL WIND: δ : P a E c I ( ) 4 w p 8E c I where: P a : ( 1) lb Where pole weight is: w p : 100 lb ft P a 1 lb L a : 9.5ft 54 in E c 5.610 6 lb : in I pole : 7516cm 4 from computer output I pole 901 in 4 DEFLECTION CLCULTIONS (pole top) T FULL WIND (cont'd): Estimated uniform load using worst case loading scenerio w ( 15 15 50 449 ) lb 4 w p p : δ 1 : 9.5ft 8E c I pole P a E c I pole w p 5 lbft -1 δ 1 1.5in OF 11

Find moment due to p- W top : ( 500) lb therefore W top W pole 500 lb 1 : 100lbft 9.5ft P 1 : W top δ 1 W pole δ 1 P 1 5 lbft let P 1 P equiv : P equiv δ : E c I pole δ 0.0in ( ) P wind : W top δ 1 δ W pole ( δ 1 δ ) Required Ultimate Groundline Capacity: (Section 161): D 595 lbft (dead load) L : 0lbft (live load) M w 5790lbft (wind load) P wind 56 lbft (p-delta load) U w U w : 01.D 1. M w P wind fl L r 0.5( S) 457lbft ( ) Sec 161, Eq. 1-4 Pole Groundline Capacity: - use 400 mm pole section with (8) 9 mm prestressing wires M u : ( 6tonnem) (from computer output of equivalent pole section) M u 499lbft > 457 lb ft. Therefore, OK Pole adequate for required loading. 4 OF 11

CHECK ERTHQUKE LODING (Section 16 - Division IV): Seismic Zone 4 Non-Building Structure (table 16-I): Z 0.4 Occupancy Category 1 Facility type (table 16-k) I 1.5 Per section 169.8. Top of antenna elev. H 5' < 65' Therefore use Static Force Proceedure Table 16-P (11) (self supporting structure) Table 16-P (11) (self supporting structure) Soil Profile Type (stiff soil profile) SD Distance to known seizmic source conservative < km (Orange County - by coast - maximum) - TYPE B fault R :.9 Ω 0 :.0 Table 16-S Near Source Factor conservative (< km) Table 16-T Near Source Factor conservative ( < km) N a : 1. N v : 1.6 Table 16-Q Seismic Factor Table 16-R Seismic Factor Design Response Spectra figure 16-): C a C v : : 0.44N a 0.64N v T s : C v.5c a T s 0.7 where: T o : 0.T s T o 0.14 W pole 950 lb W top : ( 500) lb W wires : 100lb W : W pole W top W wires W 550 lb Structure Period: s pole is not a building, the period shall be calculated as follows-- See "Formuls for Stress and Strain" by Roark, Table 6 Natural Frequencies of Members, Section b1. 5 OF 11

let W : 900lb 9.5ft w I pole : 7516cm 4 (from computer output) I pole 901 in 4 E c : 5600000lbin : W w 98lbft -1 ( ) f.5 E c Ig.5 n :.14 wl 4 f n :.14 0.5 ( 5600000901.) 989.5 4 144 0.5 and 1 T : where f n.185 therefore T 0.46 f n seconds PER SECTION 160..1 Z : 0.4 I e : 1.5 EQ (0-4) V : C v I e RT V 0.965 I e EQ (0-5) V max :.5C a V max 0.616 R ( ) EQ (0-6) V : 0.11C a I e V 0.079 I e EQ (0-7) V : 0.8ZN v V 0.1 R PER SECTION 164.5 OTHER NONBUILDING STRUCTURES: EQ (4-) V : 0.56C a I e V 0.4 I e EQ (4-) V : 1.6ZN v V 0.441 R THEREFORE EQ. (0-5) GOVERNS, and: V : 0.616 Therefore: V : VW V 1786 lb 6 OF 11

Section 160.5 F t h x1 : : 0lb 7.5ft as period is less than O.7 sec, 9.5 h x : ft ( ) w x1 ( ) ( h x ) ( ) ( h x1 ) V F t h x1 F x : W pole W top W wires F t (0-15) where: sec 168.4, Eq. 8-8 W top W wires F top : W pole W top W wires F t ( ) ( V F t ) h x1 ( ) ( h x ) ( ) ( h x1 ) F top 491 lb F pole : ( W pole ) h x ( W pole ) V F t ( ) ( ) h x ( F t ) ( h x1 ) W top W wires F pole 195 lb DEFLECTION CLCULTIONS (pole top) DUE TO ERTHQUKE: 0 ft w pearth : ( F pole ) 4 w pearth δ e1 : 8E c I pole ( F top F t ) E c I pole w pearth 4.9lbft -1 δ e1 0.4ft Find moment due to p- therefore ( ) δ e1 P e1 : W top W wires W pole δ e1 P e1 495 lbft let P equiv : P e1 P equiv δ e : E c I pole δ e 0.05in 7 OF 11

P earth : W top W wires P earth 50 lbft ( ) ( ) δ e1 δ e W pole ( δ e1 δ e ) Check Groundline Moment due to Earthquake: E h E h E v : ( F t h x1 F top h x1 F pole h x ) : 61lbft P earth E : 1.0E h E v (eq. 0-1) E 115lbft Required Ultimate Groundline Capacity: (Section 161): D 595 lbft (dead load) L : 0lbft (live load) M w 5790lbft (wind load) P wind U w U w : 01.D 1. M w P wind fl L r 0.5( S) 56 lbft 457lbft (p-delta load) ( ) Sec 161, Eq. 1-4 check groundline earthquake load U e : 1.D 1.0( E) fl Sec 161.Eq. 1-5 U e 89lbft Pole Groundline Capacity: - use 00 mm pole section with (8) 9 mm prestressing wires M u : ( 6tonnem) (from computer output of equivalent pole section) M u 499lbft > 457 lb ft. Therefore, OK Pole adequate for required loading. 8 OF 11

NCHOR BOLT CHECK: Description: nchor Bolt Diameter: Number Threads per inch: (4) 1.5" -6 BOLTS on 15" BC D : n : 7 1.5in Bolt Circle: BC : 15in Where: F y : 6000lbin F v : 0.F y 1. F v 1464lbin Let Ft same ratio increase as allowed in SHTO Section 5.17.4 0.5 F t : F v F t 940lbin 0. Cross-Sectional rea of Bolt: (Equation 5-) b π 0.974 in : D b 0.97in 4 n Base Shear V base 116 lb Torsional wind load moment at pole base: T : ( 4491.5 154) ftlb T 0lb -1 ft -1 lbft Total Horizontal Force: F h : V base F h 116 lb F h Direct Shear Stress: f v : f v 9 lbin 4 b T Torsional Shear Stress: f vt : f vt 4 lbin 4 b BC Total Shear Stress (base): f vtotb : f v f vt f vtotb 55 lbin M w Direct Tensile Stress (base): f tb : f tb 189lbin b BC Formula -- Equation 5-4 : f vtotb F v f tb F t < 1.0 THEREFORE OK 0.79 9 OF 11

TOP MOUNT BOLT CHECK: Description: nchor Bolt Diameter: Number Threads per inch: (4) /4-10 -6 on 9.45" BC D : n : 10 0.75in Bolt Circle: Yield Strength of Steel: Cross-Sectional rea of Bolt: (Section 5.17.4, eq. 5-) bt BC t : F y 9.45in : 6000lbin π 0.974 in : D bt 0.in 4 n llowable Tensile Stress: (Section 5.17.4, eq 5-1; Table -1) F t : 0.5F y 1. F t 940lbin llowable Shear Stress (Section 5.17.4, eq. 5-; Table -1) F v :.F y 1. F v 15800lbin Total Horizontal Force ( earthquake crit.): F he : F top F he 491 lb F he Direct Shear Stress: f v : 4 b f v 17 lbin Torsional Shear Stress: f vt : 0lb in f vt 0lbin Total Shear Stress: f vtot : f v f vt f vtot 17 lbin ( ) ft F he.75 Direct Tensile Stress: f t : b BC t f t 1770 lbin Formula -- Equation 5-4 : f vtot F v f t F t < 1.0 THEREFORE OK 0.01 CHECK FOUNDTION REQUIREMENTS: UNIFORM BUILDING CODE, 1997: Section 1806.8..1 NON-CONSTRINED FOOTING : LOD COMBINTION PER SECTION 161.. EQ 11 FOR LLOWBLE STRESS DESIGN. M glw : D M w M glw 5790lbft M gle : D E 1.4 M gle 654lbft Thus use wind loading: 10 OF 11

let: P : V base P 116 lb and: Ph : M glw.4p S 1 b and: h : M glw P d 1 1 4.6h 1 Ph thus: Ph 5790lbft h : h.7 ft P 116 lb P Design :.5' sq x 5' deep, weight 4000 pounds From Section 1806.8..1, b diagonal measurement of base. Therefore: b :.5ft1.414 and d : 5ft S 1 : ( d) 00lbft.01. S 1 887 lbft - (.4P) : 0.8 ft S 1 b 4.6h d reqd : 1 1 where: 1 1 1 4.6h 1 5ft Required d 5' equals 5' utilized, THEREFORE O.K. CHECK FOR LTERLLY CONSTRINED CONDITIONS: Section 1806.8..: CHECK.5" SQ X 4' DEEP FOUNDTION d : 4ft S : 00lbft S 18 lbft - d1. d reqd 4.5P S b h 0.5.8ft < 4ft THEREFORE OK Thus, for laterally constrained conditions, a.5' square by 4' deep foundation is adequate. 11 OF 11