A = (a + 1) 2 = a 2 + 2a + 1

Similar documents
Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Final Exam. Math 3 December 7, 2010

Inverse Trigonometric Functions. September 5, 2018

Linearization and Extreme Values of Functions

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

SET 1. (1) Solve for x: (a) e 2x = 5 3x

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

Section 3.5: Implicit Differentiation

1 Solution to Homework 4

Solutions to Exam 2, Math 10560

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

Math 1131Q Section 10

Chapter 5 Integrals. 5.1 Areas and Distances

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

Practice Midterm 2 Math 2153

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

MAT01A1: Inverse Functions

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

Math 113 (Calculus 2) Exam 4

Mar 10, Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18

Homework Solutions: , plus Substitutions

Spring 2015 Sample Final Exam

Math 265 (Butler) Practice Midterm III B (Solutions)

Math 250 Skills Assessment Test

Topics and Concepts. 1. Limits

Have a Safe and Happy Break

2 (x 2 + a 2 ) x 2. is easy. Do this first.

DIFFERENTIAL EQUATIONS

1 + x 2 d dx (sec 1 x) =

1 Arithmetic calculations (calculator is not allowed)

MATH 151 Engineering Mathematics I

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H

2005 Mathematics. Advanced Higher. Finalised Marking Instructions

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework.

f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

Chapter 8: Taylor s theorem and L Hospital s rule

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Exploring Substitution

6.2 Trigonometric Integrals and Substitutions

Calculus II Practice Test Questions for Chapter , 9.6, Page 1 of 9

OCR (MEI) Mathematics Advanced Subsidiary GCE Core 3 (4753) January 2010

Institute of Computer Science

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5.

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

Alpha Trigonometry Solutions MA National Convention. Answers:

Series Solution of Linear Ordinary Differential Equations

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Problem Max. Possible Points Total

Change of Variables: Indefinite Integrals

UNIT 3: DERIVATIVES STUDY GUIDE

Applications of Differentiation

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place.

Math 223 Final. July 24, 2014

Allen Zhang Bobby Laudone Dima Kuzmenko Geoff Bentsen Jaeun Park. James Hanson Julia Lindberg Mao Li Polly Yu Qiao He

Solutionbank Edexcel AS and A Level Modular Mathematics

Final Examination 201-NYA-05 May 18, 2018

1 st ORDER O.D.E. EXAM QUESTIONS

Math 152 Take Home Test 1

Calculus II/III Summer Packet

Math 1431 Final Exam Review

Math Practice Exam 3 - solutions

Power Series Solutions to the Legendre Equation

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

~UTS. University of Technology, Sydney TO BE RETURNED AT THE END OF THE EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE.

First Order Differential Equations and Applications

Final Exam SOLUTIONS MAT 131 Fall 2011

Solution: APPM 1350 Final Exam Spring 2014

Announcements. Topics: Homework:


Functions. Remark 1.2 The objective of our course Calculus is to study functions.

Analysis/Calculus Review Day 2

APPM 1350 Final Exam Fall 2017

and lim lim 6. The Squeeze Theorem

17.2 Nonhomogeneous Linear Equations. 27 September 2007

Complex numbers. Reference note to lecture 9 ECON 5101 Time Series Econometrics

Exam 3 MATH Calculus I

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

MSc Mas6002, Introductory Material Mathematical Methods Exercises

SOLUTIONS FOR PRACTICE FINAL EXAM

Math 122 Test 3. April 17, 2018

Chapter 2. First-Order Differential Equations

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

MATH1013 Calculus I. Derivatives II (Chap. 3) 1

The integral test and estimates of sums

Chapter 3: Transcendental Functions

ODE Background: Differential (1A) Young Won Lim 12/29/15

Contraction Mappings Consider the equation

Ordinary Differential Equations (ODEs)

Transcription:

A = (a + 1) 2 = a 2 + 2a + 1 1

A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 1 0 (x + 1)2 dx = 1 0 (x2 + 2x + 1)dx = 1 0 x2 dx + 2 1 0 xdx + 1 0 dx = 1 3 + 2 1 2 + 1 = 7 3 1 0 (x + 1) 2 dx = = 1 0 1 0 (x 2 + 2x + 1)dx x 2 dx + 2 = 1 3 + 21 2 + 1 1 0 xdx + 1 0 dx = 7 3

(cos x + sin x) 2 = cos 2 x + 2 cos x sin x + sin 2 x = cos 2 x + sin 2 x + 2 sin x cos x = 1 + sin(2x) n n (x i + 1) 2 = (x 2 i + 2x i + 1) i=1 = i=1 n n x 2 i + 2 x i + n i=1 i=1 f = ( x (x + 1) 2) = ( ) x x 2 + 2x + 1

A = (a + b) 2 = a 2 + 2ab + b 2 0 ( I = ln 1 + tan ( π 4 u)) ( du) = = = = = π 4 π 4 0 π 4 0 π 4 0 π 4 0 π 4 0 ( ln 1 + tan ( π 4 u)) du ( ln 1 + 1 tan u ) du 1 + tan u ( 1 + tan u + 1 tan u ln 1 + tan u ( ) 2 ln du 1 + tan u ( ln 2 ln(1 + tan u) ) du = π 4 ln 2 π 4 = π 4 ln 2 I 0 ln(1 + tan u) du ) du r l

I = = = = = = 0 π 4 π 4 0 π 4 0 π 4 0 π 4 0 π 4 0 ( ln 1 + tan ( π 4 u)) ( du) ( ln 1 + tan ( π 4 u)) du ( ln 1 + 1 tan u ) du 1 + tan u ( 1 + tan u + 1 tan u ln 1 + tan u ( ) 2 ln du 1 + tan u ( ln 2 ln(1 + tan u) ) du = π 4 ln 2 π 4 = π 4 ln 2 I 0 ln(1 + tan u) du ) du 2 i (a + b)(a + ib)(a b)(a ib) = (a + b)(a b) (a + ib)(a ib) = (a 2 b 2 )(a 2 + b 2 ) = a 4 b 4 (x y)(x + y) = x 2 y 2 2xy 3y = x 2x(K y 0 + Ky 0) 3Ky 0 = x 2xK y 0 + K(2xy 0 3y 0 ) = x 2xK y 0 = x 2xK x 3 2 = x 1 2 K = 1 2x 2 K = 1 2x y 0 x a i(a) f(a) a b a b i(a), f(a) i(b), f(b)

A = B = C + D = D = E + F + G + H + I = K + L + M = N = O A = (a + 1) 2 = a 2 + 2a + 1 F = 1 2 G = H + 1 2 K = K

φ(x, y) = 0 (x + y) 2 + (x + 2y) 2 = 0 { x + y = 0 x + 2y = 0 x y φ(x, y) = 0 (x + y) 2 + (x + 2y) 2 = 0 { x + y = 0 x + 2y = 0 x y A = (a + 1) 2 = a 2 + 2a + 1

{ f(x) = 3x 3 + 2x 2 x + 4 g(x) = 5x 2 5x + 6 n n (x i + 1) 2 = (x 2 i + 2x i + 1) i=1 = i=1 n n x 2 i + 2 x i + n i=1 i=1 n n (x i + 1) 2 = (x 2 i + 2x i + 1) i=1 = i=1 n n x 2 i + 2 x i + n i=1 i=1 φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 x + 2y = 0 x + 2y = 0

φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 2 x + 2y = 0 x + 2y = 0 φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 x + 2y = 0 x + 2y = 0 2 1 2 2 φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 2 x + 2y = 0 x + 2y = 0

φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 2 x + 2y = 0 x + 2y = 0 A = B = C = D = E = F

A B + B + B + B + B + B + B + B + B + B + B + B + B { C D E F G H + H + H + H + H + H + H { J K I L M { N O P Q 0 A B + B + B + B + B + B + B + B + B + B + B + B + B { C D E F G H + H + H + H + H + H + H { J K I L M { N O P Q

A = B = C A = B = C A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1

( S n = 1 n 1 ) n R ( ) e i π k 2n k=0 ) n ( = 1 ( 1 e i π n R 2n 1 e i π 2n = 1 n R ( 1 i 1 e i π 2n ) ) e i 2π n

E 3(2x + 4) = 6 2x + 4 = 2 2x = 2 2x = 1 3 4 2 A = (a + b) 2 = a 2 + b 2 + 2ab f(x) g(x) f(x) 2 g(x) 2 f(x) 2 g(x) 2 0

arccos(x) = arcsin 4 5 + arcsin 5 13 x = sin ( arcsin 4 5 + arcsin 5 13 x = 4 5 5 cos arcsin x = 4 5 1 ( 5 13 13 + 5 ) 2 + 5 13 ) 13 cos arcsin 4 5 1 ( ) 4 2 5 [ π 2, π 2 ] x [ 1, 1], cos(arcsin x) = 1 x 2 E 3(2x + 4) = 6 2x + 4 = 2 2x = 2 2x = 1 3 4 2

S n = 1 n = 1 n n 1 cos ( π 2 ) k n k=0 n 1 k=0 ( R ( = 1 n 1 n R k=0 e i kπ 2n e i kπ 2n ) ) ( = 1 n 1 ) n R ( ) e i π k 2n k=0 ) n ( = 1 ( 1 e i π n R 2n 1 e i π 2n = 1 n R ( 1 i 1 e i π 2n ) ) cos x = R(e ix ) R(z + z ) = R(z) + R(z ) exp + e i 2π n

E (x+4) 3 + 5x+3 5 = 7 5(x + 4) + 3(5x + 3) = 105 15 5x + 20 + 15x + 9 = 105 20x + 29 = 105 20x = 76 x = 38 10 20 29 a. f E b. f 0 c. f d. K > 0 x E f(x) K x e. f

a. f E b. f 0 c. f d. K > 0 x E f(x) K x e. f

0 0 1 2 3 4 5 6 7 1 x

0 1 2 3

x

[3, 2, 1] 1 1

x

x

x x

x

0 1 2 3 4 5 6 7 x x

x y

0 3