If σis unknown. Properties of t distribution. 6.3 One and Two Sample Inferences for Means. What is the correct multiplier? t

Similar documents
Tools Hypothesis Tests

Elementary Statistics

11/19/ Chapter 10 Overview. Chapter 10: Two-Sample Inference. + The Big Picture : Inference for Mean Difference Dependent Samples

Statistical Inference Procedures

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

Stat 3411 Spring 2011 Assignment 6 Answers

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Confidence Intervals. Confidence Intervals

TESTS OF SIGNIFICANCE

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

UNIVERSITY OF CALICUT

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance

IntroEcono. Discrete RV. Continuous RV s

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

TI-83/84 Calculator Instructions for Math Elementary Statistics

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

Study Guide for Math 12 Final Exam: Chapters 1 13

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

Review for Final Exam: Chapters 1 14

Chapter 9: Hypothesis Testing

18.05 Problem Set 9, Spring 2014 Solutions

MATHEMATICS LW Quantitative Methods II Martin Huard Friday April 26, 2013 TEST # 4 SOLUTIONS

Chapter 8 Part 2. Unpaired t-test With Equal Variances With Unequal Variances

Class 27. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Formula Sheet. December 8, 2011

Difference tests (1): parametric

Chapter 5. Root Locus Techniques

E o and the equilibrium constant, K

LECTURE 13 SIMULTANEOUS EQUATIONS

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

Chapter 8.2. Interval Estimation

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

Chapter 3.1: Polynomial Functions

Statistical Equations

Hypothesis Testing. H 0 : θ 1 1. H a : θ 1 1 (but > 0... required in distribution) Simple Hypothesis - only checks 1 value

Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y.

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom

Chapter 9 Compressible Flow 667

Widely used? average out effect Discrete Prior. Examplep. More than one observation. using MVUE (sample mean) yy 1 = 3.2, y 2 =2.2, y 3 =3.6, y 4 =4.

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

Chapter 10: H at alpha of.05. Hypothesis Testing: Additional Topics

The Simple Linear Regression Model: Theory

STA 4032 Final Exam Formula Sheet

CONDITIONAL CONFIDENCE INTERVALS OF PROCESS CAPABILITY INDICES FOLLOWING REJECTION OF PRELIMINARY TESTS JIANCHUN ZHANG

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ),

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

MTH 212 Formulas page 1 out of 7. Sample variance: s = Sample standard deviation: s = s

5.1 Two-Step Conditional Density Estimator

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others

Chapter 18: Sampling Distribution Models

Statistics Parameters

Exam-style practice: A Level

To make comparisons for two populations, consider whether the samples are independent or dependent.

Quantum Mechanics for Scientists and Engineers. David Miller

Statistical Inference for Two Samples. Applied Statistics and Probability for Engineers. Chapter 10 Statistical Inference for Two Samples

Comparing your lab results with the others by one-way ANOVA

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

Unit -2 THEORY OF DILUTE SOLUTIONS

Statistics Problem Set - modified July 25, _. d Q w. i n

Stat 200 -Testing Summary Page 1

Hidden Markov Model Parameters

Isolated Word Recogniser

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc.

Statistics - Lying without sinning? Statistics - Lying without sinning?

Chapter 7, Solution 1C.

Solutions. Definitions pertaining to solutions

Common Large/Small Sample Tests 1/55

Physics 161: Problem Set 2 - SOLUTIONS

2 1. The r.s., of size n2, from population 2 will be. 2 and 2. 2) The two populations are independent. This implies that all of the n1 n2

Nominal Regression. [DataSet0] E:\MacEwan\Teaching\stat 371\Notes\contraceptive.sav. Page 1. Notes. Output Created Comments Input 22-MAR :25:41

Fig. 1: Streamline coordinates

13.4 Scalar Kalman Filter

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf. (ˆθn θ (P ) under P. For real ˆθ n, (τ n

CE3502 Environmental Monitoring, Measurements, and Data Analysis (EMMA) Spring 2008 Final Review

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 3

Julian J. Faraway Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, USA. Phone: (734)

Reasons for Sampling. Forest Sampling. Scales of Measurement. Scales of Measurement. Sampling Error. Sampling - General Approach

Z a>2 s 1n = X L - m. X L = m + Z a>2 s 1n X L = The decision rule for this one-tail test is

Ch. 1 Introduction to Estimation 1/15

Statistical treatment of test results

Final Examination Solutions 17/6/2010

Understanding Samples

m = Statistical Inference Estimators Sampling Distribution of Mean (Parameters) Sampling Distribution s = Sampling Distribution & Confidence Interval

On the Multivariate Analysis of the level of Use of Modern Methods of Family Planning between Northern and Southern Nigeria

8.6 Order-Recursive LS s[n]

Differentiation Applications 1: Related Rates

Standard normal distribution. t-distribution, (df=5) t-distribution, (df=2) PDF created with pdffactory Pro trial version

STAT 515 fa 2016 Lec Sampling distribution of the mean, part 2 (central limit theorem)

Hypothesis Testing and Confidence Intervals (Part 1): Using the Standard Normal

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

Mathacle PSet Stats, Confidence Intervals and Estimation Level Number Name: Date: Unbiased Estimators So we don t have favorite.

Notes on Hypothesis Testing, Type I and Type II Errors

Transcription:

/8/009 6.3 Oe a Tw Samle Iferece fr Mea If i kw a 95% Cfiece Iterval i 96 ±.96 96.96 ± But i ever kw. If i ukw Etimate by amle taar eviati The etimate taar errr f the mea will be / Uig the etimate taar errr we have a cfiece iterval f ± ( ) The multilier ee t be bigger tha Z (e.g.,.96 fr 95% CI). The cfiece iterval ee t be wier t take it accut the ae ucertaity i uig t etimate. The crrect multilier were figure ut by a Guie Brewery wrker. What i the crrect multilier? t 00( α)% cfiece iterval whe i ukw ± t ( / ) 95% CI 00( 0.05)% cfiece iterval whe i ukw ± t ( / ) 0.975 Prertie f t itributi The value f t ee hw much ifrmati we have abut. The amut f ifrmati we have abut ee the amle ize. The ifrmati i egree f freem a fr a amle frm e rmal ulati thi will be f. t curve a z curve Quatile f t itributi t table i give i the bk Table B.4 Bth the taar rmal curve N(0,) (the z itributi), a all t(v) itributi are eity curve, ymmetric abut a mea f 0, but t itributi have mre rbability i the tail. A the amle ize icreae, thi ecreae a the t itributi mre clely arimate the z itributi. By 000 they are virtually iitiguihable frm e ather. It ee the egree f freem a well f rbability t 5 0.90.476 0 0.95.8 0 0.99.58 5 0.975.060 0.975.96

/8/009 Cfiece iterval fr the mea whe i ukw t < µ < t Eamle Nie level, 74.0 78.6 76.8 75.5 73.8 75.6 77.3 75.8 73.9 70. 8.0 73.9. Pit etimate fr the average ie level f vacuum cleaer;. 95% Cfiece iterval Sluti, 75.53. 75 Critical value (0.975 t quatile) with f t 0975.975.0 95% CI.75 75.53±.0 75.53±.75 73.78 < µ < 77.8 Eamle 8 (age 366) Failure time f 0 rig. The rmal lt lk fairly traight. (If t, try trafrmig r a ifferet itributi, e.g. Weibull) 68.3 33. 33. 0.47 0 90% CI 68.3 ±.833*0.47 68.3 ± 9. 49. t 87.5 If we were t tet H µ 50 v Ha µ 50, we wul t reject H0, ice 50 i i the cfiece iterval fr µ. T tet H µ # Aalgu t the large amle tet with z tet tatitic # z We wul have T # Determiati f reject / t reject H a well a -value are fu ue T-table with ν f We cul the tet uig 33. 0.47 0 68.3 50 8.3 t.74 0.47 0.47.383 <.74 <.833 Q(0.9) < tet tatitic < Q(.95) 0.05 < Pt ( >.74) < 0. value P( t >.74)* 0.< value < 0. But the cfiece iterval i mre ifrmative.

/8/009 O the ther ha Ather meth Rejecti Regi t 0.95,9.833, t 0.05,9.83 If we have a tet tatitic value that i either t mall (<.83) r t big (>.83), the we have trg eviece agait H 0. t.74 which i t t mall r t big (cmare t the cutff value abve/ critical value ), the we cat reject the ull. Alterative Hythee Rejecti Regi µ> µ 0 µ< µ 0 µ µ 0 z>z -α ----------------- t>t -α z<z α --------------- t<t α z>z -α/ r z<z α/ ------------------ t>t -α/ r t<t α/ Rejecti Regi meth a value meth Paire Data Fr Ha µ<µ 0, if z tet tatitic i le tha.645, the the value i le tha 0.05. Cmarig the value t 0.05 i the ame a cmarig the z value t.645. Fr t tet we ca al fi me critical value crreig t level f α that we ca cmare t ur tet tatitic. Tet tatitic i the rejecti regi i the ame a value i le tha α. 98 tuy f trace metal i Suth Iia River. 6 ram lcati 3 Tt water zic ccetrati (mg/l) Bbttm water zic (mg/l) 3 4 5 6 T 0.45 0.38 0.390 0.40 0.605 0.609 Bttm 0.430 0.66 0.567 0.53 0.707 0.76 4 5 6 6.3. Paire Mea Differece T cmare T & Bttm Water Zic frm a River Lcati Bttm T 0.430 0.45 0.66 0.38 3 0.567 0.390 4 0.53 040 0.40 5 0.707 0.605 6 0.76 0.609 That i equivalet t ak i it true that µ ifferece>0? Thi i a ecial cae f the mea f a igle clum f umber. Create a ew clum fr the ifferece betwee variable. T & Bttm Water Zic frm a River Lcati Bttm T Differece 0.430 0.45 0.05 0.66 0.38 0.08 3 0.567 0.390 0.77 4 0.53 0.40 0. 5 0.707 0.605 0.0 6 0.76 0.609 0.07 0.09 0.06

/8/009 Check rmality Orere i 0.05 0.08 0.0 0.07 0. 0.77 Z Quatile -.38-0.67-0. 0. 0.67.38 al Staar Nrma Quatile.5 0.5 - -.5 - Zic i River 0-0.5 0 0.05 0. 0.5 0. Zic Serie 6 i value f 6 5 95% Cfiece Iterval t.57 0.09 0.06 0.05 0.09 ±.57(0.05) 0.095 ± 0.064064 0.08 t 0.56 Nte Eve rmal lt frm ram rmal ata are t erfectly traight By the uual hythei tetig erective, the -value fr H µ 0 v Ha µ 0i le tha 0.05, ice µ 0 i t i a 95% cfiece iterval. Our reult wul be tatitically igificat eviece agait H µ 0. 0.09 0.06 0.05 0.09 0 t 3.68 0.05 t >.57 *0.005 < < *0.0 0.0< < 0.0 I hythei tetig te that the -value mut be le tha α t claim tatitical igificace. A tet i igificat at the α level if the H value i t i the 00(-α )% cfiece iterval. What abut α 0.0 level? -value > 0.0 D t reject H 0 0.09 ± 4.03(0.05) 0.09 ± 0.00-0.008 t 0.9 0.09 ± 0.00 Nt tatitically igificat at α 0.0level Aumti The ulati f ifferece fllw a rmal itributi. A rmal lt f ifferece,, hul be fairly traight. Nte We t ee B r T t be rmal. Rejecti regi eercie Tell whe t reject H 0 μ 0 uig a t tet. Awer wul be f the frm reject H 0 whe t <.746 r maybe reject H 0 whe t >.746 r maybe reject H 0 whe t >.746 (a) H A μ < 0, α 0.05, 0 (b) H A μ > 0, α 0.0, 8 (c) H A μ 0, α 0.0, 9

/8/009 Fi value eercie Awer wul be f the frm 0.0 < < 0.05 < 0.00 > 0.8 After fiig the -value i each cae, tell whether t reject r t reject H 0 at the α 0.0505 level. (a) H A µ > 0, 7, t -.58 6.3.3 Large Samle Cmari f Tw Mea Glue µ, Glue µ, Bth ulati rmal ieeet value fr glue Nt aire, blcke, ieeet value fr glue (b) H A µ < 0, 7, t -.58 (c) H A µ 0, 7, t -.58 i ur gue at µ µ µ? Hw much might eviate frm Var( ) Var( ) ( ) Var( ) µ Eerimet 0.. -..4 0.6 0.8 3. 0.4.8 Mea µ µ µ µ Variace A cfiece iterval fr µ µ i give by z z ± ± ( µ µ ) z A fr hythei tetig But we ever really kw. 6.3.4 Small Samle Cmari f Tw Mea Cae Bth a are etimatr f. The cfiece iterval ee t be wiee t accut fr aitial ucertaity i a a etimatr f a. Cae Aume equal variace. Cae D t aume variace are ecearily equal. But they may be. Pl a it a le, cmbie etimate f. weighte average f ( ) ( ( ) ( ) ) a, weight by f.

/8/009 ± t ± t ± t Fr the table value f t, ue f ( -) ( -) T tet H µ µ #, check if # i cfiece iterval r ue T ( ) # A cmare t T-table with f ( -) ( -). Cae D t aume Lifetime f Srig. Table 6.7 a Figure 6.5 t t ± r ± f T 4 4 ( ) ( ) ( ) # Nte With, ly f chage N rmal Quatile Srig Figure 6.5.000.500.000 0.500 0.000-0.50000 50 00 50 300 -.000 -.500 -.000 Lifetime 900 Stre 950 Stre 6 6 5 7 53 6 98 89 5 6 89 35 306 5 6 35 43 89 7 6 900 Stre 950 Stre 0 0 5.5 68.3 4.9 33. 3.57 0.47 Nte Uually lifetime are mre lgrmal tha rmal. T fllw the bk eamle, carry i time cale. Cae Aume f 9 9 8 9(4.9) 9(33.) 9 9 38.3 Var 4.9 33. 0 0 ( ) 468 7. 5.-68.3 ±.0(7.) 468 46.8 ± 36.0 0.8 t 8.8 Bae the cfiece iterval, we reject H µ µ 0 v H µ µ 0 at α 0.05 level.

/8/009 Alteratively, t tet H µ µ 0 v H µ µ 0 5. 68.6 t.7 f 9 9 8 7. 0.005005 < < 0.0 0 0.0 < < 0.0 T tet H µ µ 0 v H µ µ 0, 0.005 < < 0.0. > T tet H µ µ 0 v H µ 0 µ <, 0.99 < < 0.995. Cae Nt aumig f 6.9 7 7. Nte With, ly f chage 46.8 ±.0(7.) Wier CI