Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

Similar documents
MOS Transistor Properties Review

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ECE315 / ECE515 Lecture-2 Date:

ECE 342 Electronic Circuits. 3. MOS Transistors

Lecture 12: MOSFET Devices

Practice 3: Semiconductors

Lecture 28 Field-Effect Transistors

MOSFET Physics: The Long Channel Approximation

Chapter 4 Field-Effect Transistors

MOSFET: Introduction

EE105 - Fall 2005 Microelectronic Devices and Circuits

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

The Gradual Channel Approximation for the MOSFET:

6.012 Electronic Devices and Circuits Spring 2005

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

EE105 - Fall 2006 Microelectronic Devices and Circuits

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

4.4 The MOSFET as an Amp and Switch

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 18. Common Source Stage

Laboratory I: Impedance

Chapter 6: Field-Effect Transistors

Integrated Circuits & Systems

High-to-Low Propagation Delay t PHL

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

4.10 The CMOS Digital Logic Inverter

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Electronic Circuits Laboratory EE462G Lab #2

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

PURPOSE: See suggested breadboard configuration on following page!

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

ECE-305: Spring 2016 MOSFET IV

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Digital Integrated Circuits

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Device Models (PN Diode, MOSFET )

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Introduction and Background

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE315 / ECE515 Lecture 11 Date:

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Lecture 11: J-FET and MOSFET

ECE 546 Lecture 10 MOS Transistors

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

Device Models (PN Diode, MOSFET )

MOS Transistor Theory

FIELD-EFFECT TRANSISTORS

MOS Transistor I-V Characteristics and Parasitics

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

MOS Transistor Theory

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

EE382M-14 CMOS Analog Integrated Circuit Design

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Figure 1: MOSFET symbols.

Microelectronics Part 1: Main CMOS circuits design rules

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

JFET Homework. Nov. 4, 2007, rev. Nov. 12, 2015

Field-Effect (FET) transistors

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

MOSFETs - An Introduction

Design of Analog Integrated Circuits

Robert W. Brodersen EECS140 Analog Circuit Design

Using MOS Models. C.K. Ken Yang UCLA Courtesy of MAH EE 215B

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 3: CMOS Transistor Theory

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Biasing the CE Amplifier

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

ELEN 610 Data Converters

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

The Devices: MOS Transistors

A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs

Transcription:

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS ) 1

Simulation Review: Circuit Fixed V GS, Sweep V DS I D V DS

Simulation Review: Result Follows linear R on model only for small V DS I D SLOPE = 1 / R on V DS 3

Small V DS linear R on Simulation Review: Result Medium V DS < V GS - V TH : nonlinear ( triode region) I D Large V DS > V GS - V TH : I D determined (mostly) by V GS ("saturation" region) V DS 4

MOSFET Behavior MOSFET channel behaves differently as the channel drain-source voltage V DS increases: Small V DS : linear V DS -I D relationship (model as R on ) Medium V DS < V GS - V TH : nonlinear ( triode ) relationship Large V DS > V GS - V TH : approximately constant current determined (mostly) by V GS 5

What Changed? Reexamine R on derivation: Apply V GS : inversion layer of mobile charge V GS > V TH FIXED MOBILE 6

Reexamine R on Derivation Calculate mobile channel charge Assumed same voltage along channel Q = Cgs(V GS - V TH ) 7

What Changed: Voltage in V DS Channel Problem: apply V DS (to make current flow) V TH =+1V 8

Example: Apply 1V V DS Voltage drop from gate to channel: 3V at S end... V at D end V TH =+1V Less mobile charge at D end Can't assume same charge density across channel 9

Approach: Divide channel along length x into segments dx Within segment, voltage change negligible Current I D same all along channel (Kirchhoff) "KVL" from source to drain Define V ch (x) voltage in channel vs. position V S = 0 V GS = +3V V DS = +1V dr dr dx 10

Original equation: Length = dx; use V ch (x): Massage Resistance of dx segment R on = dr(x) = dr(x) = 1 W µ n C ox ( L V GS V TH ) 1 W µ n C ox ( dx V V (x) V GS ch TH ) dx ( ) µ n C ox W V GS V ch (x) V TH V S = 0 V GS = +3V V DS = +1V dr dx 11

Voltage drop dv across dx segment Ohm s Law: dv = I D dr Substitute for dr: Massage: dv = I D dx ( ) µ n C ox W V GS V ch (x) V TH µ n C ox W ( V GS V ch (x) V TH )dv = I D dx V S = 0 V GS = +3V V DS = +1V dr dx 1

Limits on V: 0 to V DS V DS Integrate both sides Limits on X: 0 to L µ n C ox W ( V GS V ch (x) V TH )dv = I D dx 0 L 0 x = 0 x = L V S = 0 V GS = +3V V DS = +1V dr dr dx 13

Integral result Evaluate Integrate, evaluate both sides µ n C ox W ( V GS V TH )V V V DS = I D x µ n C ox W ( V GS V TH )V DS V DS TRIODE REGION EQUATION I D = µ n C ox W L = I D L ( V V GS TH )V DS V DS 0 L o 14

Triode region equation: Limit for V DS << V GS - V TH V DS small V DS very small I D = µ n C ox W L ( V V GS TH )V DS V DS Approaches resistive model W I D µ n C ox ( L V V GS TH )V DS 15

Small V DS : How small is small? I D = µ n C ox W L ( V GS V TH )V DS LINEAR IN V DS V DS QUADRATIC IN V DS Compare magnitude of linear, quadratic terms 16

Condition: V GD =V TH Pinchoff Gate-to-channel difference must exceed V TH for mobile charge in channel What is current at pinchoff? V TH =+1V V GD =V TH 17

Current at Pinchoff V GD =V TH V GS - V DS =V TH V DS =V GS - V TH Substitute condition into triode equation I D = µ n C ox W L V V DS DS ( V ( GS V TH )( V GS V TH ) V GS V TH ) V DS = V GS - V TH SATURATION TRIODE 18

Current at Pinchoff Current depends only on V GS (ideally) SATURATION REGION EQUATION I D = µ n C ox W ( L V V GS TH ) V DS = V GS - V TH SATURATION TRIODE 19

Beyond Pinchoff (Simplest Model) Higher V DS No additional mobile charge in channel No increase in current V TH =+1V 0

Behavior Current source, controlled by V GS "Saturation region" (will be used as amplifier) V DS = V GS - V TH SATURATION TRIODE 1

Summary: NMOS V DS > V GS - V TH SATURATION V GS - V TH I D = µ nc ox V GS = V GS - V TH W L V GS V TH ( ) V GS > V TH V DS < V GS - V TH TRIODE I D = µ n C ox W L ( V V GS TH )V DS V DS V GS < V TH CUTOFF Analysis strategy: Assume / guess operating region, check for consistency

Summary: PMOS V DS < V GS - V TH SATURATION V GS - V TH I D = µ nc ox V GS = V GS - V TH W L V GS V TH ( ) V GS < V TH V DS > V GS - V TH TRIODE I D = µ n C ox W L ( V V GS TH )V DS V DS V GS > V TH CUTOFF Positive current flows out of drain V GS, V DS negative 3

Lab Exercise: Schematic Display I D - V DS plot on scope 4

Lab Exercise: V-I plot 1 / r o r o Note V DS dependence in active region Not accounted for in simple model 5

Beyond Pinchoff (Reality) Higher V DS Pinchoff point moves toward S Effective channel length L' < L "Channel Length Modulation" I D influenced by V DS L' V TH =+1V 6

Lab Exercise: Scope V-I plot r o r o Try different values of V GS Note what changes, what doesn t in output characteristic Note: If you try to save the scope image to a USB stick and you get a message Control is inactive in XY mode use the Utility > Options > Printer Setup menu and be sure the PRIBT Button function is set to Saves Image To File 7

Data analysis extra : MATLAB Use Saves All To Files option in YT mode to save V DS, I D data to.csv file MATLAB code online to fit parameters 8