Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Similar documents
STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Engineering Mechanics: Statics

Engineering Mechanics: Statics

Engineering Mechanics. Friction in Action

7.6 Journal Bearings

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied.

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without

Unit 21 Couples and Resultants with Couples

UNIT 2 FRICTION 2.1 INTRODUCTION. Structure. 2.1 Introduction

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b02/c2hlch...

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Course Material Engineering Mechanics. Topic: Friction

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc.

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

Engineering Mechanics

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Webreview Torque and Rotation Practice Test

Lecture 6 Friction. Friction Phenomena Types of Friction

UNIT 3 Friction and Belt Drives 06ME54. Structure

Work & Simple Machines. Chapter 4

Mathematics. Statistics

Since the block has a tendency to slide down, the frictional force points up the inclined plane. As long as the block is in equilibrium

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

SKAA 1213 Engineering Mechanics

Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction. ENGR 1205 Appendix B

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Chapter 4 Force and Motion

Coefficient of Friction

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES

5. Plane Kinetics of Rigid Bodies

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW


Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams

where G is called the universal gravitational constant.

Phys 2210 S18 Practice Exam 3: Ch 8 10

Dry Friction Static vs. Kinetic Angles

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws

M D P L sin x FN L sin C W L sin C fl cos D 0.

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

Simple Machines. Changes effort, displacement or direction and magnitude of a load 6 simple machines. Mechanical Advantage

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward.

acceleration weight load

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13

Chapter 10 Practice Test

Concept Question: Normal Force

Chapter 6. Force and Motion II

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines

l Every object in a state of uniform motion tends to remain in that state of motion unless an

Phys 106 Practice Problems Common Quiz 1 Spring 2003

TOPIC D: ROTATION EXAMPLES SPRING 2018

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC.

Code No: R Set No. 1

Name: Date: Period: AP Physics C Rotational Motion HO19

Rotation review packet. Name:

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Chapter: Work and Machines

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved.

8.012 Physics I: Classical Mechanics Fall 2008

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A

The magnitude of this force is a scalar quantity called weight.

Here is what you will be able to do when you complete each objective: 1. State the general laws of static and kinetic friction.

REVIEW. Final Exam. Final Exam Information. Final Exam Information. Strategy for Studying. Test taking strategy. Sign Convention Rules

ARIZONA STATE UNIVERSITY KIN 335 BIOMECHANICS. LAB #6: Friction

Work, Power, & Machines

Unit 1 Lesson 1.1 Mechanisms

E 490 FE Exam Prep. Engineering Mechanics

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)

Rolling, Torque, Angular Momentum

11-2 A General Method, and Rolling without Slipping

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

Chapter 4. Forces and Newton s Laws of Motion. continued

16. Rotational Dynamics

PHYSICS 149: Lecture 21

LAWS OF MOTION. Chapter Five MCQ I

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1

Plane Motion of Rigid Bodies: Forces and Accelerations

AP Physics Free Response Practice Dynamics

End-of-Chapter Exercises

1 MR SAMPLE EXAM 3 FALL 2013

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

5 Equilibrium of a Rigid Body Chapter Objectives

FE Statics Review. Sanford Meek Department of Mechanical Engineering Kenn 226 (801)

Torsion of shafts with circular symmetry

Questions from all units

Broughton High School

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

Four naturally occuring forces

ME 230 Kinematics and Dynamics

Physics 101 Lecture 5 Newton`s Laws

It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Laws of Motion. Multiple Choice Questions

Transcription:

Friction Chapter 8

Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body relative to a second body Empirical evidence shows that frictional forces act tangent to the contacting surface in a direction opposing the relative motion or tendency for motion. Equilibrium: F = P, N = W, and W*x = P*h.

Dry Friction Assume that tipping does not occur (i.e., h is small or a is large). As we gradually increase the magnitude of the force P. the friction force F varies with P,

Dry Friction The maximum friction force is attained just before the block begins to move (a situation that is called impending motion ). The value of the force is found using F s = s N, where s is called the coefficient of static friction. s depends on the two materials in contact. Once the block begins to move, the frictional force typically drops and is given by F k = k N. The value of k is the coefficient of kinetic friction and is less than s.

Dry Friction It is important to note that the friction force may be less than the maximum friction force. If the object is not moving, don t assume the friction force is at its max. value of F s = s N unless you are told or know motion is impending

Determing s on the verge of sliding, the block just begins to slip, the maximum friction force is F s = s N Thus, N and F s combine to create a resultant R s From the figure, tan s = ( F s / N ) = ( s N / N ) = s

Determing S - Inclined Plane Analysis of the block just before it begins to move gives (using F s = s N): + F y = N W cos s = 0 + F X = S N W sin s = 0 s = (W sin s ) / (W cos s ) = tan s

Impending Tipping Versus Slipping how can we determine if the block will slide or tip first? In this case, we have four unknowns (F, N, x, and P) and only three E-of-E. we have to make an assumption to give us another equation (the friction equation!). Then we can solve for the unknowns Finally, we need to check if our assumption was correct.

Impending Tipping Versus Slipping Assumption: Slipping occurs Known: F = s N Solve for: x, P, and N Check: 0 x b/2 Assumption: Tipping occurs Known: x = b/2 Solve for: P, N, and F Check: F s N

WEDGES AND FRICTIONAL FORCES ON FLAT BELTS Wedges are used to adjust the elevation or provide stability for heavy objects Belt drives are commonly used for transmitting the torque developed by a motor to a wheel attached to a pump, fan or blower.

Analysis of a Wedge A wedge is a simple machine in which a small force P is used to lift a large weight W First we draw the free body diagram of the wedge, noting that 1) the friction forces are always in the direction opposite to the motion, 2) the friction forces are along the contacting surfaces; and, 3) the normal forces are perpendicular to the contacting surfaces

Analysis of a Wedge Next, we look at the object on top of the wedge noting 1) at the contacting surfaces between the wedge and the object the forces are equal in magnitude and opposite in direction to those on the wedge; and, 2) all other forces acting on the object should be shown. 3) F x = 0 and F y = 0, for the wedge and the object Also, for the impending motion frictional equation, F = S N.

Analysis of a Wedge Start by analyzing the free body diagram in which the number of unknowns are less than or equal to the number of equations of equilibrium and frictional equations

Analysis of a Wedge If the object is to be lowered, then the wedge needs to be pulled out. If the value of the force P needed to remove the wedge is positive, then the wedge is self-locking, i.e., it will not come out on its own.

Analysis of Flat Belt Consider a flat belt passing over a fixed curved surface with the total angle of contact equal to (in radians) If the belt slips or is just about to slip, then T 2 must be larger than T 1 plus the motion resisting friction forces. Hence, T 2 must be greater than T 1.

Analysis of Flat Belt It can be shown that T 2 = T 1 e where is the coefficient of static friction between the belt and the surface. [see text for proof] Remember to use radians when using this formula!!

Analysis of Screws Screws are used as fasteners or to transmit power or motion from one machine part to another Screws can be classified by the thread. E.g. squarethreaded screw, V-thread A screw is considered a cylinder called a barrel or shaft, with the thread wrapped around it.

Analysis of Screws If we unwind the thread by one revolution, the slope or lead angle is given by l tan 1 2r l is called the lead of the screw, and is the distance advanced by turning the screw one revolution

Upward Impending Motion Consider a square-threaded screw subject to impending motion due to an applied torque M. The free body diagram of the entire unraveled thread through can be represented as follows where W is the vertical force on the or the axial force on the shaft, and R is the reaction of the groove on the thread. R has frictional and normal components

Upward Impending Motion The horizontal force associated with the couple moment M is M/r. The frictional component The angle of static friction s tan 1 F N By Equations of Equilibrium F x F y F tan s 1 s N 0; M R s r 0; Rcos W 0 M rw tan s sin 0 s

Self-Locking Screw A screw is self-locking if it remains in place under any axial load W when the moment M is removed. In this case R acts on the other side of N. If, s then R will act vertically to balance W, and the screw will be on the verge of winding downwards

Downward Impending Motion If a screw is self-locking, a couple M must be applied in the opposite direction to wind the screw downward s This causes a horizontal force in the reverse direction that will push the thread downwards Using the previous procedure it can be shown that M' rw tan s

Downward Impending Motion If the screw is not self-locking it is necessary to apply a moment M to prevent the screw from winding downwards s A horizontal force M /r is required to push against the thread to prevent it from sliding downwards The magnitude of the moment required to prevent this unwinding is M" rw tan s

Pivot & Collar Bearings Pivot and collar bearings are used in machines to support an axial load on a rotating shaft In the absence of lubrication, the laws of dry friction may be applied to determine the moment needed to turn the shaft as it supports the axial load.

Pivot & Collar Bearings: Analysis If P is the axial force, and the contact area is π(r 22 -R 12 ), then the normal pressure P p 2 ( R 2 R Consider an infinitesimally small area of collar subjected to normal force dn and its associated frictional force df da ( rd ).( dr), 2 1 dn ) p da df dn s sp s p da 2 2 ( R R ) 2 1 da

Pivot & Collar Bearings: Analysis The frictional force creates a moment about the z-axis For impending motion Substituting for df and da and integrating over the entire bearing area r df dm 2 1 2 2 3 1 3 2 3 2 R R R R M sp 0; z M A rdf M 0 2 1 2 1 2 0 2 2 1 2 2 2 0 2 1 2 2 ) ( ) ( ) ( R R s R R s d dr r R R P dr rd R R P r M

Pivot & Collar Bearings: Analysis If the shaft is rotating at constant speed, substitute k for s For a pivot bearing R 2 = R and R 1 = 0, so 2 M spr 3 Note that the above equation are based on constant (uniform) pressure on the bearing surfaces. If that is not the case a function relating pressure and bearing area must ne determined before integrating

Journal Bearings When a shaft or axle is subjected to lateral loads, a journal bearing is used for support. In the absence of lubrication we can apply the laws of dry friction

Journal Bearings: Analysis Consider the journal bearing support shown If the shaft is subjected to a vertical force, resulting in a reactive force at A, the moment needed to maintain constant rotation about the z-axis can be found from z M 0; M ( Rsin ) r 0 k M Rr sin k

Journal Bearings: Analysis Where φ s is the angle of kinetic friction, and tan F / N N / k From diagram it can be seen that rsin k r f The dashed circle with radius r f is called the friction circle and R will always be tangent to it If there is some lubrication k And the moment needed to overcome the friction becomes M Rr N k k sin tan k k k

Journal Bearings: Analysis In practice journals are prone to rapid wear due to friction between shaft and bearing. In engineering design this is overcome by incorporating ball bearings or rollers in the journal bearing to reduce frictional losses

Rolling Resistance Consider a rigid cylinder rolling at constant velocity over a rigid surface. Now if the rigid cylinder rolls over a softer surface, it deforms the material of the surface in front of it. The reaction of the surface on the cylinder retards its forward motion. The material at the rear of the cylinder however rebounds and pushes the cylinder forward

Rolling Resistance The deformation force always exceeds the restoration/ rebound force, hence the resistance to rolling. The force required to maintain the motion at that constant velocity is Wa P r where a is the coefficient of rolling resistance

Rolling Resistance Rolling resistance is significantly lower than sliding resistance Also for a given body, the harder the surface the less the rolling resistance The above explain why rollers or ball bearings can be used to minimize friction between moving part of machines

Comments & Questions